Indiscernibles

From The Right Wiki
Revision as of 14:42, 24 September 2024 by imported>Rictus (Fixed typo)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In mathematical logic, indiscernibles are objects that cannot be distinguished by any property or relation defined by a formula. Usually only first-order formulas are considered.

Examples

If a, b, and c are distinct and {a, b, c} is a set of indiscernibles, then, for example, for each binary formula β, we must have

[β(a,b)β(b,a)β(a,c)β(c,a)β(b,c)β(c,b)]
[¬β(a,b)¬β(b,a)¬β(a,c)¬β(c,a)¬β(b,c)¬β(c,b)].

Historically, the identity of indiscernibles was one of the laws of thought of Gottfried Leibniz.

Generalizations

In some contexts one considers the more general notion of order-indiscernibles, and the term sequence of indiscernibles often refers implicitly to this weaker notion. In our example of binary formulas, to say that the triple (a, b, c) of distinct elements is a sequence of indiscernibles implies

([φ(a,b)φ(a,c)φ(b,c)][¬φ(a,b)¬φ(a,c)¬φ(b,c)]) and
([φ(b,a)φ(c,a)φ(c,b)][¬φ(b,a)¬φ(c,a)¬φ(c,b)]).

More generally, for a structure 𝔄 with domain A and a linear ordering <, a set IA is said to be a set of <-indiscernibles for 𝔄 if for any finite subsets {i0,,in}I and {j0,,jn}I with i0<<in and j0<<jn and any first-order formula ϕ of the language of 𝔄 with n free variables, 𝔄ϕ(i0,,in)𝔄ϕ(j0,,jn).[1]p. 2

Applications

Order-indiscernibles feature prominently in the theory of Ramsey cardinals, Erdős cardinals, and zero sharp.

See also

References

  • Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-44085-7. Zbl 1007.03002.

Citations

  1. J. Baumgartner, F. Galvin, "Generalized Erdős cardinals and 0#". Annals of Mathematical Logic vol. 15, iss. 3 (1978).