Novikov's compact leaf theorem

From The Right Wiki
Revision as of 10:30, 6 July 2024 by imported>MrRaindrop75 (added a missing comma)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In mathematics, Novikov's compact leaf theorem, named after Sergei Novikov, states that

A codimension-one foliation of a compact 3-manifold whose universal covering space is not contractible must have a compact leaf.

Novikov's compact leaf theorem for S3

Theorem: A smooth codimension-one foliation of the 3-sphere S3 has a compact leaf. The leaf is a torus T2 bounding a solid torus with the Reeb foliation. The theorem was proved by Sergei Novikov in 1964. Earlier, Charles Ehresmann had conjectured that every smooth codimension-one foliation on S3 had a compact leaf, which was known to be true for all known examples; in particular, the Reeb foliation has a compact leaf that is T2.

Novikov's compact leaf theorem for any M3

In 1965, Novikov proved the compact leaf theorem for any M3: Theorem: Let M3 be a closed 3-manifold with a smooth codimension-one foliation F. Suppose any of the following conditions is satisfied:

  1. the fundamental group π1(M3) is finite,
  2. the second homotopy group π2(M3)0,
  3. there exists a leaf LF such that the map π1(L)π1(M3) induced by inclusion has a non-trivial kernel.

Then F has a compact leaf of genus g ≤ 1. In terms of covering spaces: A codimension-one foliation of a compact 3-manifold whose universal covering space is not contractible must have a compact leaf.

References

  • S. Novikov. The topology of foliations//Trudy Moskov. Mat. Obshch, 1965, v. 14, p. 248–278.[1]
  • I. Tamura. Topology of foliations — AMS, v.97, 2006.
  • D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., 36 (1976), p. 225–255. [2]