Large deformation diffeomorphic metric mapping

From The Right Wiki
Revision as of 21:54, 25 February 2024 by imported>Cewbot (Fixing broken anchor: 2016-03-14 #The Diffeomorphism Group of Computational Anatomy→Computational anatomy#The diffeomorphism group of computational anatomy, Incorrect capitalization/spaced section title #Diffeomorphometry:the metric space of shapes and forms→Computational anatomy#Diffeomorphometry: The metric space of shapes and forms, 2016-03-10 #The deformable template orbit model of CA⇝...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Large deformation diffeomorphic metric mapping (LDDMM) is a specific suite of algorithms used for diffeomorphic mapping and manipulating dense imagery based on diffeomorphic metric mapping within the academic discipline of computational anatomy, to be distinguished from its precursor based on diffeomorphic mapping. The distinction between the two is that diffeomorphic metric maps satisfy the property that the length associated to their flow away from the identity induces a metric on the group of diffeomorphisms, which in turn induces a metric on the orbit of shapes and forms within the field of Computational Anatomy. The study of shapes and forms with the metric of diffeomorphic metric mapping is called diffeomorphometry. A diffeomorphic mapping system is a system designed to map, manipulate, and transfer information which is stored in many types of spatially distributed medical imagery. Diffeomorphic mapping is the underlying technology for mapping and analyzing information measured in human anatomical coordinate systems which have been measured via Medical imaging[citation needed]. Diffeomorphic mapping is a broad term that actually refers to a number of different algorithms, processes, and methods. It is attached to many operations and has many applications for analysis and visualization. Diffeomorphic mapping can be used to relate various sources of information which are indexed as a function of spatial position as the key index variable. Diffeomorphisms are by their Latin root structure preserving transformations, which are in turn differentiable and therefore smooth, allowing for the calculation of metric based quantities such as arc length and surface areas. Spatial location and extents in human anatomical coordinate systems can be recorded via a variety of Medical imaging modalities, generally termed multi-modal medical imagery, providing either scalar and or vector quantities at each spatial location. Examples are scalar T1 or T2 magnetic resonance imagery, or as 3x3 diffusion tensor matrices diffusion MRI and diffusion-weighted imaging, to scalar densities associated to computed tomography (CT), or functional imagery such as temporal data of functional magnetic resonance imaging and scalar densities such as Positron emission tomography (PET). Computational anatomy is a subdiscipline within the broader field of neuroinformatics within bioinformatics and medical imaging. The first algorithm for dense image mapping via diffeomorphic metric mapping was Beg's LDDMM[1][2] for volumes and Joshi's landmark matching for point sets with correspondence,[3][4] with LDDMM algorithms now available for computing diffeomorphic metric maps between non-corresponding landmarks[5] and landmark matching intrinsic to spherical manifolds,[6] curves,[7] currents and surfaces,[8][9][10] tensors,[11] varifolds,[12] and time-series.[13][14][15] The term LDDMM was first established as part of the National Institutes of Health supported Biomedical Informatics Research Network.[16] In a more general sense, diffeomorphic mapping is any solution that registers or builds correspondences between dense coordinate systems in medical imaging by ensuring the solutions are diffeomorphic. There are now many codes organized around diffeomorphic registration[17] including ANTS,[18] DARTEL,[19] DEMONS,[20] StationaryLDDMM,[21] FastLDDMM,[22][23] as examples of actively used computational codes for constructing correspondences between coordinate systems based on dense images. The distinction between diffeomorphic metric mapping forming the basis for LDDMM and the earliest methods of diffeomorphic mapping is the introduction of a Hamilton principle of least-action in which large deformations are selected of shortest length corresponding to geodesic flows. This important distinction arises from the original formulation of the Riemannian metric corresponding to the right-invariance. The lengths of these geodesics give the metric in the metric space structure of human anatomy. Non-geodesic formulations of diffeomorphic mapping in general does not correspond to any metric formulation.

History of development

Diffeomorphic mapping 3-dimensional information across coordinate systems is central to high-resolution Medical imaging and the area of Neuroinformatics within the newly emerging field of bioinformatics. Diffeomorphic mapping 3-dimensional coordinate systems as measured via high resolution dense imagery has a long history in 3-D beginning with Computed Axial Tomography (CAT scanning) in the early 80's by the University of Pennsylvania group led by Ruzena Bajcsy,[24] and subsequently the Ulf Grenander school at Brown University with the HAND experiments.[25][26] In the 90's there were several solutions for image registration which were associated to linearizations of small deformation and non-linear elasticity.[27][28][29][30][31] The central focus of the sub-field of Computational anatomy (CA) within medical imaging is mapping information across anatomical coordinate systems at the 1 millimeter morphome scale. In CA mapping of dense information measured within Magnetic resonance image (MRI) based coordinate systems such as in the brain has been solved via inexact matching of 3D MR images one onto the other. The earliest introduction of the use of diffeomorphic mapping via large deformation flows of diffeomorphisms for transformation of coordinate systems in image analysis and medical imaging was by Christensen, Rabbitt and Miller [17][32] and Trouve.[33] The introduction of flows, which are akin to the equations of motion used in fluid dynamics, exploit the notion that dense coordinates in image analysis follow the Lagrangian and Eulerian equations of motion. This model becomes more appropriate for cross-sectional studies in which brains and or hearts are not necessarily deformations of one to the other. Methods based on linear or non-linear elasticity energetics which grows with distance from the identity mapping of the template, is not appropriate for cross-sectional study. Rather, in models based on Lagrangian and Eulerian flows of diffeomorphisms, the constraint is associated to topological properties, such as open sets being preserved, coordinates not crossing implying uniqueness and existence of the inverse mapping, and connected sets remaining connected. The use of diffeomorphic methods grew quickly to dominate the field of mapping methods post Christensen's original paper, with fast and symmetric methods becoming available.[19][34] Such methods are powerful in that they introduce notions of regularity of the solutions so that they can be differentiated and local inverses can be calculated. The disadvantages of these methods is that there was no associated global least-action property which could score the flows of minimum energy. This contrasts the geodesic motions which are central to the study of Rigid body kinematics and the many problems solved in Physics via Hamilton's principle of least action. In 1998, Dupuis, Grenander and Miller[35] established the conditions for guaranteeing the existence of solutions for dense image matching in the space of flows of diffeomorphisms. These conditions require an action penalizing kinetic energy measured via the Sobolev norm on spatial derivatives of the flow of vector fields. The large deformation diffeomorphic metric mapping (LDDMM) code that Faisal Beg derived and implemented for his PhD at Johns Hopkins University[36] developed the earliest algorithmic code which solved for flows with fixed points satisfying the necessary conditions for the dense image matching problem subject to least-action. Computational anatomy now has many existing codes organized around diffeomorphic registration[17] including ANTS,[18] DARTEL,[19] DEMONS,[37] LDDMM,[2] StationaryLDDMM[21] as examples of actively used computational codes for constructing correspondences between coordinate systems based on dense images. These large deformation methods have been extended to landmarks without registration via measure matching,[38] curves,[39] surfaces,[40] dense vector[41] and tensor [42] imagery, and varifolds removing orientation.[43]

The diffeomorphism orbit model in computational anatomy

Deformable shape in computational anatomy (CA)[44][45][46][47]is studied via the use of diffeomorphic mapping for establishing correspondences between anatomical coordinates in Medical Imaging. In this setting, three dimensional medical images are modelled as a random deformation of some exemplar, termed the template Itemp, with the set of observed images element in the random orbit model of CA for images I{I=Itempφ,φDiffV}. The template is mapped onto the target by defining a variational problem in which the template is transformed via the diffeomorphism used as a change of coordinate to minimize a squared-error matching condition between the transformed template and the target. The diffeomorphisms are generated via smooth flows φt,t[0,1], with φφ1, satisfying the Lagrangian and Eulerian specification of the flow field associated to the ordinary differential equation,

ddtφt=vtφt,φ0=id,

with vt,t[0,1] the Eulerian vector fields determining the flow. The vector fields are guaranteed to be 1-time continuously differentiable vtC1 by modelling them to be in a smooth Hilbert space vV supporting 1-continuous derivative.[48] The inverse φt1,t[0,1] is defined by the Eulerian vector-field with flow given by

ddtφt1=(Dφt1)vt,φ01=id. (Inverse Transport flow)

To ensure smooth flows of diffeomorphisms with inverse, the vector fields with components in 3 must be at least 1-time continuously differentiable in space[49][50] which are modelled as elements of the Hilbert space (V,V) using the Sobolev embedding theorems so that each element viH03,i=1,2,3, has 3-times square-integrable weak-derivatives. Thus (V,V) embeds smoothly in 1-time continuously differentiable functions.[37][50] The diffeomorphism group are flows with vector fields absolutely integrable in Sobolev norm

DiffV{φ=φ1:φ˙t=vtφt,φ0=id,01vtVdt<}. (Diffeomorphism Group)

The variational problem of dense image matching and sparse landmark matching

LDDMM algorithm for dense image matching

In CA the space of vector fields (V,V) are modelled as a reproducing Kernel Hilbert space (RKHS) defined by a 1-1, differential operatorA:VV* determining the norm vV2R3Avvdx,vV, where the integral is calculated by integration by parts when Av is a generalized function in the dual space V*. The differential operator is selected so that the Green's kernel, the inverse of the operator, is continuously differentiable in each variable implying that the vector fields support 1-continuous derivative; see[48] for the necessary conditions on the norm for existence of solutions.

The original large deformation diffeomorphic metric mapping (LDDMM) algorithms of Beg, Miller, Trouve, Younes[51] was derived taking variations with respect to the vector field parameterization of the group, since

v=ϕ˙ϕ1

are in a vector spaces. Beg solved the dense image matching minimizing the action integral of kinetic energy of diffeomorphic flow while minimizing endpoint matching term according to

minv:ϕ˙=vϕ,ϕ0=idC(v)1201R3Avtvtdxdt+12R3|Iϕ11J|2dx

(Variational Problem Images)
  • Beg's Iterative Algorithm for Dense Image Matching

Update until convergence,

ϕtoldϕtnew

each iteration, with

ϕt1ϕ1ϕt1

:

{vtnew()=vtold()ϵ(vtoldR3K(,y)(Iϕt1old(y)Jϕt1old(y))(Iϕt1old(y))|Dϕt1old(y)|dy),t[0,1]ϕ˙tnew=vtnewϕtnew,t[0,1] (Beg-LDDMM-iteration)

This implies that the fixed point at t=0 satisfies

μ0*=Av0*=(IJϕ1*)I|Dϕ1*|,

which in turn implies it satisfies the Conservation equation given by the Endpoint Matching Condition according to

Avt*=(Dϕt*1)TAv0*ϕt*1|Dϕt*1|

[52][53]

LDDMM registered landmark matching

The landmark matching problem has a pointwise correspondence defining the endpoint condition with geodesics given by the following minimum:

minv:ϕ˙t=vtϕtC(v)1201R3Avtvtdxdt+12i(ϕ1(xi)yi)(ϕ1(xi)yi);
Figure showing dense image mtaching LDDMM for transporting a curved motion.
Figure depicts LDMM dense image matching. Top row shows transport of the image under the flow Iϕt1; middle row shows sequence of vector fields vt,t=0,1/5,2/5,3/5,4/5,1; bottom row shows the sequence of grids under ϕt.
  • Iterative Algorithm for Landmark Matching

Joshi originally defined the registered landmark matching probleme,.[3] Update until convergence, ϕtoldϕtnew each iteration, with ϕt1ϕ1ϕt1:

{vtnew()=vtold()ϵ(vtold+iK(,ϕtold(xi))(Dϕt1)oldT|ϕtold(xi)(yiϕ1old(xi)),t[0,1]ϕ˙tnew=vtnewϕtnew,t[0,1] (Landmark-LDDMM-iteration)

This implies that the fixed point satisfy

Av0=i(Dϕ1)(xi)T(yiϕ1(xi))δxi

with

Avt=i(Dϕt1)T|ϕt(xi)(yiϕ1(xi))δϕt(xi).

Variations for LDDMM dense image and landmark matching

The Calculus of variations was used in Beg[49][53] to derive the iterative algorithm as a solution which when it converges satisfies the necessary maximizer conditions given by the necessary conditions for a first order variation requiring the variation of the endpoint with respect to a first order variation of the vector field. The directional derivative calculates the Gateaux derivative as calculated in Beg's original paper[49] and.[54][55]

First Order Variation of the Flow and Vector Field for Dense Image and Landmark Matching

The first order variation in the vector fields v+ϵδv requires the variation of ϕ1 generalizes the matrix perturbation of the inverse via (ϕ+ϵδϕϕ)(ϕ1+ϵδϕ1ϕ1)=id+o(ϵ) giving δϕ1ϕ1=(Dϕ11)δϕ. To express the variation in terms of δv, use the solution to the Lie bracket ddt(δϕ|ϕ)=(Dv)|ϕδϕ|ϕ+δv|ϕ giving

δϕ1=(Dϕ1)|ϕ1101(Dϕt)|ϕ111(δvt)ϕtϕ11dt
  • Image Matching:

Taking the directional derivative of the image endpoint condition E(ϕ)=X|Iϕ1J|2dx gives

ddϵ12X|I(ϕ1+ϵδϕ1ϕ1)J|2dx|ϵ=0=X(Iϕ1J)I|ϕ1δϕ1ϕ1dx=X(Iϕ1J)I|ϕ1(Dϕ11)δϕdx
=X(Iϕ11J)I|ϕ11(Dϕ1)|ϕ111(Dϕ1)|ϕ11)01(Dϕt)|ϕ111(δvt)|ϕtϕ11dtdx.

Substituting ϕt1ϕ1ϕt1 gives the necessary condition for an optimum:

ddϵC(v+ϵδv)|ϵ=0=01XAvtδvtdxdt01X(Iϕ11J)I|ϕ11(Dϕt)|ϕ111(δvt)|ϕtϕ11dxdt=01X(Avt(Iϕt1Jϕt1)I|ϕt1(Dϕt)|ϕt11|Dϕt1|)δvtdxdt=0.
  • Landmark Matching:

Take the variation in the vector fields v+ϵδv of 12i|ϕ1(xi)yi)|2 use the chain rule for the perturbation δϕϕ to gives the first variation

i(ϕ1(xi)yi)Dϕ1|ϕ11(ϕ1(xi))01(Dϕt)|ϕ11(ϕ1(xi))1δvt|ϕtϕ11(ϕ1(xi))dt
=01Xiδϕt(xi)(x)(ϕ1(xi)yi)(Dϕ1)ϕt1(x)(Dϕt)ϕt1(x)1δvt(x)dxdt=01Xiδϕt(xi)(y)(Dϕt1)ϕt(xi)T(ϕ1(xi)yi)δvt(x)dxdt

LDDMM Diffusion Tensor Image Matching

LDDMM matching based on the principal eigenvector of the diffusion tensor matrix takes the image I(x),x3 as a unit vector field defined by the first eigenvector. [41] The group action becomes

φI={Dφ1φIφ1Iφ1Dφ1φIφ1Iφ0,0otherwise.

where that denotes image squared-error norm. LDDMM matching based on the entire tensor matrix [56] has group action φM=(λ1e^1e^1T+λ2e^2e^2T+λ3e^3e^3T)φ1, transformed eigenvectors

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \hat{e}_1 &=\frac{D \varphi e_1}{\|D \varphi e_1\|} \ , \ \ \ \hat{e}_2=\frac{D \varphi e_2-\langle \hat{e}_1,D \varphi e_2\rangle \hat{e}_1}{\sqrt{\|D \varphi e_2\|^2-\langle \hat{e}_1,D \varphi e_2\rangle^2}}\ , \ \ \ \hat{e}_3=\hat{e}_1 \times \hat{e}_2 \end{align}} .

Dense matching problem onto principle eigenvector of DTI

The variational problem matching onto vector image I(x),x3with endpoint

E(ϕ1)α3ϕ1II2dx+β3(ϕ1II)2dx).

becomes

minv:ϕ˙ϕ11201R3Avtvtdxdt+α3ϕ1II2dx+β3(ϕ1II)2dx.

Dense matching problem onto DTI MATRIX

The variational problem matching onto: M(x),x3 with endpoint

E(ϕ1)3ϕ1M(x)M(x)F2dx

with F Frobenius norm, giving variational problem

minv:v=ϕ˙ϕ11201R3Avtvtdxdt+α3ϕ1M(x)M(x)F2dx (Dense-TensorDTI-Matching)

LDDMM ODF

High angular resolution diffusion imaging (HARDI) addresses the well-known limitation of DTI, that is, DTI can only reveal one dominant fiber orientation at each location. HARDI measures diffusion along n uniformly distributed directions on the sphere and can characterize more complex fiber geometries by reconstructing an orientation distribution function (ODF) that characterizes the angular profile of the diffusion probability density function of water molecules. The ODF is a function defined on a unit sphere, 𝕊2.[57] Denote the square-root ODF (ODF) as ψ(s), where ψ(s) is non-negative to ensure uniqueness and s𝕊2ψ2(s)ds=1. The metric defines the distance between two ODF functions ψ1,ψ2Ψ as

ρ(ψ1,ψ2)=logψ1(ψ2)ψ1=cos1ψ1,ψ2=cos1(s𝕊2ψ1(s)ψ2(s)ds),

where , is the normal dot product between points in the sphere under the L2 metric. The template and target are denoted ψtemp(s,x), ψtarg(s,x),s𝕊2xX indexed across the unit sphere and the image domain, with the target indexed similarly. Define the variational problem assuming that two ODF volumes can be generated from one to another via flows of diffeomorphisms ϕt, which are solutions of ordinary differential equations ϕ˙t=vt(ϕt),t[0,1],ϕ0=id. The group action of the diffeomorphism on the template is given according to ϕ1ψ(x)(Dϕ1)ψϕ11(x),xX, where (Dϕ1) is the Jacobian of the affined transformed ODF and is defined as

(Dϕ1)ψϕ11(x)=det(Dϕ11ϕ1)1(Dϕ11ϕ1)1s3ψ((Dϕ11ϕ1)1s(Dϕ11ϕ1)1s,ϕ11(x)).

The LDDMM variational problem is defined as

minv:ϕ˙t=vtϕt,ϕ0=id01R3Avtvtdxdt+λR3log(Dϕ1)ψtempϕ11(x)(ψtarg(x))(Dϕ1)ψtempϕ11(x)2dx.

Hamiltonian LDDMM for dense image matching

Beg solved the early LDDMM algorithms by solving the variational matching taking variations with respect to the vector fields.[58] Another solution by Vialard,[59] reparameterizes the optimization problem in terms of the state qtIϕt1,q0=I, for image I(x),xX=R3, with the dynamics equation controlling the state by the control given in terms of the advection equation according to q˙t=qtvt. The endpoint matching term E(q1)12q1J2 gives the variational problem:

minv:q˙=vqC(v)1201R3Avtvtdxdt+123|q1(x)J(x)|2dx (Advective-State-Image-Matching)
{Hamiltonian Dynamicsq˙t=qtvtp˙t=div(ptvt),t[0,1]Avt=μt=ptqtEndpoint Conditionp1=Eq1(q1)=(q1J)=(Iϕ11J)Av1=μ1=(Iϕ11J)(Iϕ11)t=1.Conserved Dynamicspt=(Iϕt1Jϕt1)|Dϕt1|,t[0,1]. (Hamiltonian Matching Condition)
Proof of Hamiltonian Dynamics

The Hamiltonian dynamics with advected state and control dynamics qt=Iϕt1, q˙=qv with extended Hamiltonian H(q,p,v)=(p|qv)12(Av|v) gives the variational problem[53]

minp,q,vC(p,q,v)(p|q˙)((p|qv)12(Av|v))+E(q1)=(p|q˙)H(p,q,v)+E(q1).

The first variation gives the condition on the optimizing vector field Av=pq, with the endpoint condition p1=Eq(q1) and dynamics on the Lagrange multipliers determined by the Gatteux derivative conditions (p˙(pv)|δq))=0 and the state (δp|q˙+qv)=0.

Software for diffeomorphic mapping

Software suites containing a variety of diffeomorphic mapping algorithms include the following:

Cloud software

See also

References

  1. M.F. Beg; M. I. Miller; A. Trouve; L. Younes (2005). "Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms". International Journal of Computer Vision. 61 (2): 139–157. doi:10.1023/B:VISI.0000043755.93987.aa. S2CID 17772076. Retrieved 2016-01-27.
  2. 2.0 2.1 2.2 "NITRC: LDDMM: Tool/Resource Info". www.nitrc.org. Retrieved 2015-12-11.
  3. 3.0 3.1 Joshi, S. C.; Miller, M. I. (2000-01-01). "Landmark matching via large deformation diffeomorphisms". IEEE Transactions on Image Processing. 9 (8): 1357–1370. Bibcode:2000ITIP....9.1357J. doi:10.1109/83.855431. ISSN 1057-7149. PMID 18262973. S2CID 6659707.
  4. Scherzer, Otmar (2010-11-23). Handbook of Mathematical Methods in Imaging. Springer Science & Business Media. ISBN 9780387929194.
  5. Glaunes, J.; Trouve, A.; Younes, L. (2004-06-01). "Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching". Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Vol. 2. pp. II–712–II–718 Vol.2. CiteSeerX 10.1.1.158.4209. doi:10.1109/CVPR.2004.1315234. ISBN 978-0-7695-2158-9.
  6. Glaunès, Joan; Vaillant, Marc; Miller, Michael I (2004). "Landmark Matching via Large Deformation Diffeomorphisms on the Sphere: Special Issue on Mathematics and Image Analysis". Journal of Mathematical Imaging and Vision. 20: 179–200. doi:10.1023/B:JMIV.0000011326.88682.e5. S2CID 21324161. Retrieved 2016-03-27.
  7. Du, Jia; Younes, Laurent; Qiu, Anqi (2011-05-01). "Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images". NeuroImage. 56 (1): 162–173. doi:10.1016/j.neuroimage.2011.01.067. ISSN 1053-8119. PMC 3119076. PMID 21281722.
  8. Vaillant, Marc; Glaunès, Joan (2005-01-01). "Surface Matching via Currents". Information Processing in Medical Imaging. Lecture Notes in Computer Science. Vol. 19. pp. 381–392. doi:10.1007/11505730_32. ISBN 978-3-540-26545-0. ISSN 1011-2499. PMID 17354711. S2CID 5103312. {{cite book}}: |journal= ignored (help)
  9. Vaillant, Marc; Qiu, Anqi; Glaunès, Joan; Miller, Michael I. (2007-02-01). "Diffeomorphic Metric Surface Mapping in Superior Temporal Gyrus". NeuroImage. 34 (3): 1149–1159. doi:10.1016/j.neuroimage.2006.08.053. ISSN 1053-8119. PMC 3140704. PMID 17185000.
  10. Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas (2009-10-01). "Statistical models of sets of curves and surfaces based on currents". Medical Image Analysis. 13 (5): 793–808. CiteSeerX 10.1.1.221.5224. doi:10.1016/j.media.2009.07.007. ISSN 1361-8423. PMID 19679507.
  11. Cao, Yan; Miller, Michael I.; Mori, Susumu; Winslow, Raimond L.; Younes, Laurent (2006-07-05). "Diffeomorphic Matching of Diffusion Tensor Images". 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06). Vol. 2006. p. 67. doi:10.1109/CVPRW.2006.65. ISBN 978-0-7695-2646-1. ISSN 1063-6919. PMC 2920614. PMID 20711423.
  12. Charon, Nicolas; Trouvé, Alain (2013). "The varifold representation of non-oriented shapes for diffeomorphic registration". SIAM Journal on Imaging Sciences. 6 (4): 2547–2580. arXiv:1304.6108. Bibcode:2013arXiv1304.6108C. doi:10.1137/130918885. ISSN 1936-4954. S2CID 14335966.
  13. Miller, Michael I. (2004-01-01). "Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms". NeuroImage. 23 (Suppl 1): S19–33. CiteSeerX 10.1.1.121.4222. doi:10.1016/j.neuroimage.2004.07.021. ISSN 1053-8119. PMID 15501089. S2CID 13365411.
  14. Trouvé, Alain; Vialard, François-Xavier (1 May 2012). "Shape splines and stochastic shape evolutions: A second order point of view". Quarterly of Applied Mathematics. 70 (2): 219–251. arXiv:1003.3895. Bibcode:2010arXiv1003.3895T. doi:10.1090/S0033-569X-2012-01250-4. JSTOR 43639026. S2CID 96421820.
  15. Fletcher, P.T.; Lu, C.; Pizer, S.M.; Joshi, S. (2004-08-01). "Principal geodesic analysis for the study of nonlinear statistics of shape". IEEE Transactions on Medical Imaging. 23 (8): 995–1005. CiteSeerX 10.1.1.76.539. doi:10.1109/TMI.2004.831793. ISSN 0278-0062. PMID 15338733. S2CID 620015.
  16. "Large Deformation Diffeomorphic Metric Mapping (LDDMM) | Biomedical Informatics Research Network (BIRN)". www.birncommunity.org. Retrieved 2016-03-11.
  17. 17.0 17.1 17.2 Christensen, G. E.; Rabbitt, R. D.; Miller, M. I. (1996-10-01). "Deformable Templates Using Large Deformation Kinematics". IEEE Transactions on Image Processing. 5 (10): 1435–1447. Bibcode:1996ITIP....5.1435C. doi:10.1109/83.536892. ISSN 1057-7149. PMID 18290061.
  18. 18.0 18.1 18.2 "stnava/ANTs". GitHub. Retrieved 2015-12-11.
  19. 19.0 19.1 19.2 Ashburner, John (2007-10-15). "A fast diffeomorphic image registration algorithm". NeuroImage. 38 (1): 95–113. doi:10.1016/j.neuroimage.2007.07.007. ISSN 1053-8119. PMID 17761438. S2CID 545830.
  20. "Software - Tom Vercauteren". sites.google.com. Retrieved 2016-04-16.
  21. 21.0 21.1 21.2 "Publication:Comparing algorithms for diffeomorphic registration: Stationary LDDMM and Diffeomorphic Demons". www.openaire.eu. Archived from the original on 2016-02-16. Retrieved 2015-12-11.
  22. Zhang, Miaomiao; Fletcher, P. Thomas (2015). "Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration". Information Processing in Medical Imaging. Lecture Notes in Computer Science. Vol. 24. pp. 249–259. doi:10.1007/978-3-319-19992-4_19. ISBN 978-3-319-19991-7. ISSN 1011-2499. PMID 26221678. S2CID 10334673.
  23. Zhang, Miaomiao; Liao, Ruizhi; Dalca, Adrian V.; Turk, Esra A.; Luo, Jie; Grant, P. Ellen; Golland, Polina (2017-06-25). "Frequency Diffeomorphisms for Efficient Image Registration". Information Processing in Medical Imaging. Lecture Notes in Computer Science. Vol. 10265. pp. 559–570. doi:10.1007/978-3-319-59050-9_44. ISBN 9783319590493. PMC 5788203. PMID 29391767.
  24. Bajcsy, Ruzena; Kovačič, Stane (1989-04-01). "Multiresolution Elastic Matching". Comput. Vision Graph. Image Process. 46 (1): 1–21. doi:10.1016/S0734-189X(89)80014-3. ISSN 0734-189X.
  25. Grenander, Ulf; Chow, Yun-shyong; Keenan, Daniel MacRae (1991-01-01). Hands: a pattern theoretic study of biological shapes. Springer-Verlag. ISBN 9780387973869.
  26. Amit, Yali; Grenander, Ulf; Piccioni, Mauro (1991-01-01). "Structural Image Restoration Through Deformable Templates". Journal of the American Statistical Association. 86 (414): 376–387. doi:10.2307/2290581. JSTOR 2290581.
  27. Gee, James C.; Reivich, Martin; Bilaniuk, L.; Hackney, David; Zimmerman, R.; Kovacic, Stanislav; Bajcsy, Ruzena K. (1991-01-01). Loew, Murray H. (ed.). "Evaluation of multiresolution elastic matching using MRI data". Medical Imaging V: Image Processing. 1445: 226–234. Bibcode:1991SPIE.1445..226G. doi:10.1117/12.45220. S2CID 62540002.
  28. Gee, J. C.; Reivich, M.; Bajcsy, R. (1993-04-01). "Elastically deforming 3D atlas to match anatomical brain images". Journal of Computer Assisted Tomography. 17 (2): 225–236. doi:10.1097/00004728-199303000-00011. ISSN 0363-8715. PMID 8454749. S2CID 25781937.
  29. Miller, M I; Christensen, G E; Amit, Y; Grenander, U (1993-12-15). "Mathematical textbook of deformable neuroanatomies". Proceedings of the National Academy of Sciences of the United States of America. 90 (24): 11944–11948. Bibcode:1993PNAS...9011944M. doi:10.1073/pnas.90.24.11944. ISSN 0027-8424. PMC 48101. PMID 8265653.
  30. Maintz, J. B.; Viergever, M. A. (1998-03-01). "A survey of medical image registration". Medical Image Analysis. 2 (1): 1–36. CiteSeerX 10.1.1.46.4959. doi:10.1016/s1361-8415(01)80026-8. ISSN 1361-8415. PMID 10638851.
  31. Rabbitt, Richard D.; Weiss, Jeffrey A.; Christensen, Gary E.; Miller, Michael I. (1995-01-01). Melter, Robert A.; Wu, Angela Y.; Bookstein, Fred L.; Green, William D. K. (eds.). "Mapping of hyperelastic deformable templates using the finite element method". Vision Geometry IV. 2573: 252–265. Bibcode:1995SPIE.2573..252R. doi:10.1117/12.216419. S2CID 63135203.
  32. Christensen, G. E.; Rabbitt, R. D.; Miller, M. I. (1994-03-01). "3D brain mapping using a deformable neuroanatomy". Physics in Medicine and Biology. 39 (3): 609–618. Bibcode:1994PMB....39..609C. CiteSeerX 10.1.1.46.1833. doi:10.1088/0031-9155/39/3/022. ISSN 0031-9155. PMID 15551602. S2CID 250809709.
  33. Trouvé, Alain (1998-07-01). "Diffeomorphisms Groups and Pattern Matching in Image Analysis". International Journal of Computer Vision. 28 (3): 213–221. doi:10.1023/A:1008001603737. ISSN 0920-5691. S2CID 8322028.
  34. Avants, B. B.; Epstein, C. L.; Grossman, M.; Gee, J. C. (2008-02-01). "Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain". Medical Image Analysis. 12 (1): 26–41. doi:10.1016/j.media.2007.06.004. ISSN 1361-8423. PMC 2276735. PMID 17659998.
  35. Dupuis, Paul; Grenander, Ulf (1998-09-01). "Variational Problems on Flows of Diffeomorphisms for Image Matching". Q. Appl. Math. LVI (3): 587–600. doi:10.1090/qam/1632326. ISSN 0033-569X.
  36. Beg, M. Faisal; Miller, Michael I.; Trouvé, Alain; Younes, Laurent (2005-02-01). "Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms". International Journal of Computer Vision. 61 (2): 139–157. doi:10.1023/B:VISI.0000043755.93987.aa. ISSN 0920-5691. S2CID 17772076.
  37. 37.0 37.1 "Software - Tom Vercauteren". sites.google.com. Retrieved 2015-12-11.
  38. Glaunes, J; Trouve, A; Younes, L (2004). "Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching". Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Vol. 2. pp. 712–718. CiteSeerX 10.1.1.158.4209. doi:10.1109/CVPR.2004.1315234. ISBN 978-0-7695-2158-9. Retrieved 2015-11-25.
  39. Glaunès, Joan; Qiu, Anqi; Miller, Michael I.; Younes, Laurent (2008-12-01). "Large Deformation Diffeomorphic Metric Curve Mapping". International Journal of Computer Vision. 80 (3): 317–336. doi:10.1007/s11263-008-0141-9. ISSN 0920-5691. PMC 2858418. PMID 20419045.
  40. Vaillant, Marc; Glaunès, Joan (2005-01-01). "Surface Matching via Currents". Information Processing in Medical Imaging. Lecture Notes in Computer Science. Vol. 19. pp. 381–392. CiteSeerX 10.1.1.88.4666. doi:10.1007/11505730_32. ISBN 978-3-540-26545-0. PMID 17354711. {{cite book}}: |journal= ignored (help)
  41. 41.0 41.1 Cao, Yan; Miller, M.I.; Winslow, R.L.; Younes, L. (2005-10-01). "Large deformation diffeomorphic metric mapping of fiber orientations". Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. Vol. 2. pp. 1379–1386 Vol. 2. CiteSeerX 10.1.1.158.1582. doi:10.1109/ICCV.2005.132. ISBN 978-0-7695-2334-7. S2CID 13019795.
  42. Cao, Yan; Miller, M.I.; Winslow, R.L.; Younes, L. (2005-09-01). "Large deformation diffeomorphic metric mapping of vector fields". IEEE Transactions on Medical Imaging. 24 (9): 1216–1230. CiteSeerX 10.1.1.157.8377. doi:10.1109/TMI.2005.853923. ISSN 0278-0062. PMC 2848689. PMID 16156359. S2CID 7046743.
  43. Charon, N.; Trouvé, A. (2013-01-01). "The Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration". SIAM Journal on Imaging Sciences. 6 (4): 2547–2580. arXiv:1304.6108. Bibcode:2013arXiv1304.6108C. doi:10.1137/130918885. S2CID 14335966.
  44. Miller, Michael; Banerjee, Ayananshu; Christensen, Gary; Joshi, Sarang; Khaneja, Navin; Grenander, Ulf; Matejic, Larissa (1997-06-01). "Statistical methods in computational anatomy". Statistical Methods in Medical Research. 6 (3): 267–299. doi:10.1177/096228029700600305. ISSN 0962-2802. PMID 9339500. S2CID 35247542.
  45. Grenander, Ulf; Miller, Michael I. (1 December 1998). "Computational anatomy: an emerging discipline". Quarterly of Applied Mathematics. 56 (4): 617–694. doi:10.1090/qam/1668732.
  46. Miller, Michael I.; Trouvé, Alain; Younes, Laurent (2002-01-01). "On the Metrics and Euler-Lagrange Equations of Computational Anatomy". Annual Review of Biomedical Engineering. 4 (1): 375–405. CiteSeerX 10.1.1.157.6533. doi:10.1146/annurev.bioeng.4.092101.125733. PMID 12117763.
  47. Miller, Michael I.; Qiu, Anqi (2009-03-01). "The emerging discipline of Computational Functional Anatomy". NeuroImage. 45 (1 Suppl): S16–39. doi:10.1016/j.neuroimage.2008.10.044. ISSN 1095-9572. PMC 2839904. PMID 19103297.
  48. 48.0 48.1 Dupuis, Paul; Grenander, Ulf; Miller, Michael I. (1 September 1998). "Variational problems on flows of diffeomorphisms for image matching". Quarterly of Applied Mathematics. 56 (3): 587–600. doi:10.1090/qam/1632326.
  49. A. Trouvé. Action de groupe de dimension infinie et reconnaissance de formes. C R Acad Sci Paris Sér I Math, 321(8):1031– 1034, 1995.
  50. 50.0 50.1 P. Dupuis, U. Grenander, M.I. Miller, Existence of Solutions on Flows of Diffeomorphisms, Quarterly of Applied Math, 1997.
  51. Beg, M. Faisal; Miller, Michael I; Trouvé, Alain; Younes, Laurent (2005). "Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms". International Journal of Computer Vision. 61 (2): 139–157. doi:10.1023/B:VISI.0000043755.93987.aa. S2CID 17772076. Retrieved 2016-03-20.
  52. Miller, Michael I.; Younes, Laurent; Trouvé, Alain (2014-03-01). "Diffeomorphometry and geodesic positioning systems for human anatomy". Technology. 2 (1): 36–43. doi:10.1142/S2339547814500010. ISSN 2339-5478. PMC 4041578. PMID 24904924.
  53. 53.0 53.1 53.2 Miller, Michael I.; Trouvé, Alain; Younes, Laurent (2015-01-01). "Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson". Annual Review of Biomedical Engineering. 17: 447–509. doi:10.1146/annurev-bioeng-071114-040601. ISSN 1545-4274. PMID 26643025.
  54. Grenander, Ulf; Miller, Michael (2007-02-08). Pattern Theory: From Representation to Inference. Oxford University Press. ISBN 9780199297061.
  55. Younes, Laurent (2010-05-25). Shapes and Diffeomorphisms | Laurent Younes | Springer. www.springer.com. ISBN 9783642120541. Retrieved 2016-04-16.
  56. Cao, Yan; Miller, M.I.; Mori, Susumu; Winslow, R.L.; Younes, L. (2006-06-01). "Diffeomorphic Matching of Diffusion Tensor Images". 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06). Vol. 2006. p. 67. doi:10.1109/CVPRW.2006.65. ISBN 978-0-7695-2646-1. PMC 2920614. PMID 20711423.
  57. Du, J; Goh, A; Qiu, A (2012). "Diffeomorphic metric mapping of high angular resolution diffusion imaging based on Riemannian structure of orientation distribution functions". IEEE Transactions on Medical Imaging. 31 (5): 1021–1033. doi:10.1109/TMI.2011.2178253. PMID 22156979. S2CID 11533837.
  58. Beg, M. Faisal; Miller, Michael I.; Trouvé, Alain; Younes, Laurent (2005-02-01). "Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms". International Journal of Computer Vision. 61 (2): 139–157. doi:10.1023/B:VISI.0000043755.93987.aa. ISSN 0920-5691. S2CID 17772076.
  59. Vialard, François-Xavier; Risser, Laurent; Rueckert, Daniel; Cotter, Colin J. (2012-04-01). "Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation". Int. J. Comput. Vis. 97 (2): 229–241. doi:10.1007/s11263-011-0481-8. ISSN 0920-5691. S2CID 18251140.
  60. Stanley Durrleman. "Deformetrica Software". Retrieved 19 August 2022.
  61. Ashburner, John (2007-10-15). "A fast diffeomorphic image registration algorithm". NeuroImage. 38 (1): 95–113. doi:10.1016/j.neuroimage.2007.07.007. PMID 17761438. S2CID 545830.
  62. "Software - Tom Vercauteren". sites.google.com. Retrieved 2015-12-11.
  63. "MRICloud". The Johns Hopkins University. Retrieved 1 January 2015.

Further reading