Bernstein's problem

From The Right Wiki
Revision as of 01:55, 17 October 2024 by imported>Citation bot (Added bibcode. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Functions and mappings | #UCB_Category 60/160)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In differential geometry, Bernstein's problem is as follows: if the graph of a function on Rn−1 is a minimal surface in Rn, does this imply that the function is linear? This is true for n at most 8, but false for n at least 9. The problem is named for Sergei Natanovich Bernstein who solved the case n = 3 in 1914.

Statement

Suppose that f is a function of n − 1 real variables. The graph of f is a surface in Rn, and the condition that this is a minimal surface is that f satisfies the minimal surface equation

i=1n1xifxi1+j=1n1(fxj)2=0

Bernstein's problem asks whether an entire function (a function defined throughout Rn−1 ) that solves this equation is necessarily a degree-1 polynomial.

History

Bernstein (1915–1917) proved Bernstein's theorem that a graph of a real function on R2 that is also a minimal surface in R3 must be a plane. Fleming (1962) gave a new proof of Bernstein's theorem by deducing it from the fact that there is no non-planar area-minimizing cone in R3. De Giorgi (1965) showed that if there is no non-planar area-minimizing cone in Rn−1 then the analogue of Bernstein's theorem is true for graphs in Rn, which in particular implies that it is true in R4. Almgren (1966) showed there are no non-planar minimizing cones in R4, thus extending Bernstein's theorem to R5. Simons (1968) showed there are no non-planar minimizing cones in R7, thus extending Bernstein's theorem to R8. He also showed that the surface defined by

{x8:x12+x22+x32+x42=x52+x62+x72+x82}

is a locally stable cone in R8, and asked if it is globally area-minimizing. Bombieri, De Giorgi & Giusti (1969) showed that Simons' cone is indeed globally minimizing, and that in Rn for n≥9 there are graphs that are minimal, but not hyperplanes. Combined with the result of Simons, this shows that the analogue of Bernstein's theorem is true in Rn for n≤8, and false in higher dimensions.

References

  • Almgren, F. J. (1966), "Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem", Annals of Mathematics, Second Series, 84 (2): 277–292, doi:10.2307/1970520, ISSN 0003-486X, JSTOR 1970520, MR 0200816
  • Bernstein, S. N. (1915–1917), "Sur une théorème de géometrie et ses applications aux équations dérivées partielles du type elliptique", Comm. Soc. Math. Kharkov, 15: 38–45 German translation in Bernstein, Serge (1927), "Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus", Mathematische Zeitschrift (in German), 26, Springer Berlin / Heidelberg: 551–558, doi:10.1007/BF01475472, ISSN 0025-5874{{citation}}: CS1 maint: unrecognized language (link)
  • Bombieri, Enrico; De Giorgi, Ennio; Giusti, E. (1969), "Minimal cones and the Bernstein problem", Inventiones Mathematicae, 7 (3): 243–268, Bibcode:1969InMat...7..243B, doi:10.1007/BF01404309, ISSN 0020-9910, MR 0250205, S2CID 59816096
  • De Giorgi, Ennio (1965), "Una estensione del teorema di Bernstein", Ann. Scuola Norm. Sup. Pisa (3), 19: 79–85, MR 0178385
  • Fleming, Wendell H. (1962), "On the oriented Plateau problem", Rendiconti del Circolo Matematico di Palermo. Serie II, 11: 69–90, doi:10.1007/BF02849427, ISSN 0009-725X, MR 0157263
  • Sabitov, I. Kh. (2001) [1994], "Bernstein theorem", Encyclopedia of Mathematics, EMS Press
  • Simons, James (1968), "Minimal varieties in riemannian manifolds", Annals of Mathematics, Second Series, 88 (1): 62–105, doi:10.2307/1970556, ISSN 0003-486X, JSTOR 1970556, MR 0233295
  • Straume, E. (2001) [1994], "Bernstein problem in differential geometry", Encyclopedia of Mathematics, EMS Press

External links