Rabi cycle

From The Right Wiki
Revision as of 06:53, 23 November 2024 by 2001:4c3c:4100:8f00:c92e:962:6d84:7cf1 (talk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
File:Mplwp Rabi oscillations.svg
Rabi oscillations, showing the probability of a two-level system initially in |1 to end up in |2 at different detunings Δ.

In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi. A two-level system is one that has two possible energy levels. These two levels are a ground state with lower energy and an excited state with higher energy. If the energy levels are not degenerate (i.e. not having equal energies), the system can absorb a quantum of energy and transition from the ground state to the "excited" state. When an atom (or some other two-level system) is illuminated by a coherent beam of photons, it will cyclically absorb photons and re-emit them by stimulated emission. One such cycle is called a Rabi cycle, and the inverse of its duration is the Rabi frequency of the system. The effect can be modeled using the Jaynes–Cummings model and the Bloch vector formalism.

Mathematical description

A detailed mathematical description of the effect can be found on the page for the Rabi problem. For example, for a two-state atom (an atom in which an electron can either be in the excited or ground state) in an electromagnetic field with frequency tuned to the excitation energy, the probability of finding the atom in the excited state is found from the Bloch equations to be

|cb(t)|2sin2(ωt/2),

where ω is the Rabi frequency. More generally, one can consider a system where the two levels under consideration are not energy eigenstates. Therefore, if the system is initialized in one of these levels, time evolution will make the population of each of the levels oscillate with some characteristic frequency, whose angular frequency[1] is also known as the Rabi frequency. The state of a two-state quantum system can be represented as vectors of a two-dimensional complex Hilbert space, which means that every state vector |ψ is represented by complex coordinates:

|ψ=(c1c2)=c1(10)+c2(01),

where c1 and c2 are the coordinates.[2] If the vectors are normalized, c1 and c2 are related by |c1|2+|c2|2=1. The basis vectors will be represented as |0=(10) and |1=(01). All observable physical quantities associated with this systems are 2 × 2 Hermitian matrices, which means that the Hamiltonian of the system is also a similar matrix.

Derivations

One can construct an oscillation experiment through the following steps:[3]

  1. Prepare the two-level system in a fixed state; for example, |1
  2. Let the state evolve freely, under a Hamiltonian H for time t
  3. Find the probability P(t), that the state is in |1

If |1 is an eigenstate of H, P(t)=1 and there will be no oscillations. Also if the two states |0 and |1 are degenerate, every state including |1 is an eigenstate of H. As a result, there will be no oscillations. On the other hand, if H has no degenerate eigenstates, and the initial state is not an eigenstate, then there will be oscillations. The most general form of the Hamiltonian of a two-state system is given

H=(a0+a3a1ia2a1+ia2a0a3)

here, a0,a1,a2 and a3 are real numbers. This matrix can be decomposed as,

H=a0σ0+a1σ1+a2σ2+a3σ3;

The matrix σ0 is the 2 × 2 identity matrix and the matrices σk(k=1,2,3) are the Pauli matrices. This decomposition simplifies the analysis of the system especially in the time-independent case where the values of a0,a1,a2 and a3are constants. Consider the case of a spin-1/2 particle in a magnetic field B=Bz^. The interaction Hamiltonian for this system is

H=μB=γSB=γBSz, Sz=2σ3=2(1001),

where μ is the magnitude of the particle's magnetic moment, γ is the Gyromagnetic ratio and σ is the vector of Pauli matrices. Here the eigenstates of Hamiltonian are eigenstates of σ3, that is |0 and |1, with corresponding eigenvalues of E+=2γB,E=2γB. The probability that a system in the state |ψ can be found in the arbitrary state |ϕ is given by |ϕ|ψ|2. Let the system be prepared in state |+X at time t=0. Note that |+X is an eigenstate of σ1:

|ψ(0)=12(11)=12(10)+12(01).

Here the Hamiltonian is time independent. Thus by solving the stationary Schrödinger equation, the state after time t is given by |ψ(t)=exp[iHt]|ψ(0)=(exp[iE+t]00exp[iEt])|ψ(0), with total energy of the system E. So the state after time t is given by:

|ψ(t)=eiE+t12|0+eiEt12|1.

Now suppose the spin is measured in x-direction at time t. The probability of finding spin-up is given by:|+X|ψ(t)|2=|0|+1|2(12exp[iE+t]|0+12exp[iEt]|1)|2=cos2(ωt2),where ω is a characteristic angular frequency given by ω=E+E=γB, where it has been assumed that EE+.[4] So in this case the probability of finding spin-up in x-direction is oscillatory in time t when the system's spin is initially in the |+X direction. Similarly, if we measure the spin in the |+Z-direction, the probability of measuring spin as 2 of the system is 12. In the degenerate case where E+=E, the characteristic frequency is 0 and there is no oscillation. Notice that if a system is in an eigenstate of a given Hamiltonian, the system remains in that state. This is true even for time dependent Hamiltonians. Taking for example H^=γSzBsin(ωt); if the system's initial spin state is |+Y, then the probability that a measurement of the spin in the y-direction results in +2 at time t is |+Y|ψ(t)|2=cos2(γB2ωcos(ωt)).[5]

By Pauli matrices

Consider a Hamiltonian of the formH^=E0σ0+W1σ1+W2σ2+Δσ3=(E0+ΔW1iW2W1+iW2E0Δ).The eigenvalues of this matrix are given byλ+=E+=E0+Δ2+W12+W22=E0+Δ2+|W|2λ=E=E0Δ2+W12+W22=E0Δ2+|W|2,where W=W1+iW2 and |W|2=W12+W22=WW*, so we can take W=|W|eiϕ. Now, eigenvectors for E+ can be found from equation(E0+ΔW1iW2W1+iW2E0Δ)(ab)=E+(ab).Sob=a(E0+ΔE+)W1iW2.Applying the normalization condition on the eigenvectors, |a|2+|b|2=1. So|a|2+|a|2(Δ|W|Δ2+|W|2|W|)2=1.Let sinθ=|W|Δ2+|W|2 and cosθ=ΔΔ2+|W|2. So tanθ=|W|Δ. So we get |a|2+|a|2(1cosθ)2sin2θ=1. That is |a|2=cos2(θ2), using the identity tan(θ2)=1cos(θ)sin(θ). The phase of a relative to b should be ϕ. Choosing a to be real, the eigenvector for the eigenvalue E+ is given by|E+=(cos(θ2)eiϕsin(θ2))=cos(θ2)|0+eiϕsin(θ2)|1.Similarly, the eigenvector for eigenenergy E is|E=sin(θ2)|0eiϕcos(θ2)|1.From these two equations, we can write|0=cos(θ2)|E++sin(θ2)|E|1=eıϕsin(θ2)|E+eıϕcos(θ2)|E.Suppose the system starts in state |0 at time t=0; that is,|ψ(0)=|0=cos(θ2)|E++sin(θ2)|E.For a time-independent Hamiltonian, after time t, the state evolves as|ψ(t)=eiH^t|ψ(0)=cos(θ2)eiE+t|E++sin(θ2)eiEt|E.If the system is in one of the eigenstates |E+ or |E, it will remain the same state. However, for a time-dependent Hamiltonian and a general initial state as shown above, the time evolution is non trivial. The resulting formula for the Rabi oscillation is valid because the state of the spin may be viewed in a reference frame that rotates along with the field.[6] The probability amplitude of finding the system at time t in the state |1 is given by 1|ψ(t)=eiϕsin(θ2)cos(θ2)(eiE+teiEt). Now the probability that a system in the state |ψ(t) will be found to be in the state |1 is given byP01(t)=|1|ψ(t)|2=eıϕsin(θ2)cos(θ2)(e+ıE+te+ıEt)e+ıϕsin(θ2)cos(θ2)(eıE+teıEt)=sin2θ4(22cos((E+E)t))This can be simplified to

P01(t)=sin2(θ)sin2((E+E)t2)=|W|2Δ2+|W|2sin2((E+E)t2) (1)

This shows that there is a finite probability of finding the system in state |1 when the system is originally in the state |0. The probability is oscillatory with angular frequency ω=E+E2=Δ2+|W|2, which is simply unique Bohr frequency of the system and also called Rabi frequency. The formula (1) is known as Rabi formula. Now after time t the probability that the system in state |0 is given by |0|ψ(t)|2=1sin2(θ)sin2((E+E)t2), which is also oscillatory. These types of oscillations of two-level systems are called Rabi oscillations, which arise in many problems such as Neutrino oscillation, the ionized Hydrogen molecule, Quantum computing, Ammonia maser, etc.

Applications

The Rabi effect is important in quantum optics, magnetic resonance and quantum computing.

Quantum optics

Quantum computing

Any two-state quantum system can be used to model a qubit. Consider a spin-12 system with magnetic moment μ placed in a classical magnetic field B=B0z^+B1(cos(ωt)x^sin(ωt)y^). Let γ be the gyromagnetic ratio for the system. The magnetic moment is thus μ=2γσ. The Hamiltonian of this system is then given by H=μB=2ω0σz2ω1(σxcosωtσysinωt) where ω0=γB0 and ω1=γB1. One can find the eigenvalues and eigenvectors of this Hamiltonian by the above-mentioned procedure. Now, let the qubit be in state |0 at time t=0. Then, at time t, the probability of it being found in state |1 is given by P01(t)=(ω1Ω)2sin2(Ωt2) where Ω=(ωω0)2+ω12. This phenomenon is called Rabi oscillation. Thus, the qubit oscillates between the |0 and |1 states. The maximum amplitude for oscillation is achieved at ω=ω0, which is the condition for resonance. At resonance, the transition probability is given by P01(t)=sin2(ω1t2). To go from state |0 to state |1 it is sufficient to adjust the time t during which the rotating field acts such that ω1t2=π2 or t=πω1. This is called a π pulse. If a time intermediate between 0 and πω1 is chosen, we obtain a superposition of |0 and |1. In particular for t=π2ω1, we have a π2 pulse, which acts as: |0|0+i|12. This operation has crucial importance in quantum computing. The equations are essentially identical in the case of a two level atom in the field of a laser when the generally well satisfied rotating wave approximation is made. Then ω0 is the energy difference between the two atomic levels, ω is the frequency of laser wave and Rabi frequency ω1 is proportional to the product of the transition electric dipole moment of atom d and electric field E of the laser wave that is ω1dE. In summary, Rabi oscillations are the basic process used to manipulate qubits. These oscillations are obtained by exposing qubits to periodic electric or magnetic fields during suitably adjusted time intervals.[7]

See also

References

  1. Rabi oscillations, Rabi frequency, stimulated emission. Encyclopedia of Laser Physics and Technology.
  2. Griffiths, David (2005). Introduction to Quantum Mechanics (2nd ed.). p. 341.
  3. Sourendu Gupta (27 August 2013). "The physics of 2-state systems" (PDF). Tata Institute of Fundamental Research.
  4. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 191.
  5. Griffiths, David (2012). Introduction to Quantum Mechanics (2nd ed.) p. 196 ISBN 978-8177582307
  6. Merlin, R. (2021). "Rabi oscillations, Floquet states, Fermi's golden rule, and all that: Insights from an exactly solvable two-level model". American Journal of Physics. 89 (1): 26–34. Bibcode:2021AmJPh..89...26M. doi:10.1119/10.0001897. S2CID 234321681.
  7. A Short Introduction to Quantum Information and Quantum Computation by Michel Le Bellac, ISBN 978-0521860567