Complex conjugate representation

From The Right Wiki
Revision as of 05:00, 26 January 2021 by imported>BattyBot (top: Replaced {{unreferenced}} with {{more citations needed}} and other General fixes)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In mathematics, if G is a group and Π is a representation of it over the complex vector space V, then the complex conjugate representation Π is defined over the complex conjugate vector space V as follows:

Π(g) is the conjugate of Π(g) for all g in G.

Π is also a representation, as one may check explicitly. If g is a real Lie algebra and π is a representation of it over the vector space V, then the conjugate representation π is defined over the conjugate vector space V as follows:

π(X) is the conjugate of π(X) for all X in g.[1]

π is also a representation, as one may check explicitly. If two real Lie algebras have the same complexification, and we have a complex representation of the complexified Lie algebra, their conjugate representations are still going to be different. See spinor for some examples associated with spinor representations of the spin groups Spin(p + q) and Spin(p, q). If 𝔤 is a *-Lie algebra (a complex Lie algebra with a * operation which is compatible with the Lie bracket),

π(X) is the conjugate of −π(X*) for all X in g

For a finite-dimensional unitary representation, the dual representation and the conjugate representation coincide. This also holds for pseudounitary representations.

See also

Notes

  1. This is the mathematicians' convention. Physicists use a different convention where the Lie bracket of two real vectors is an imaginary vector. In the physicist's convention, insert a minus in the definition.