Exercise prescription

From The Right Wiki
Revision as of 12:00, 6 September 2024 by imported>Daask (Remove parenthetical in-text citations per WP:PAREN.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Exercise prescription commonly refers to the specific plan of fitness-related activities that are designed for a specified purpose, which is often developed by a fitness or rehabilitation, or Exercise medicine specialist for the client or patient. Due to the specific and unique needs and interests of the client/patient, the goal of exercise prescription should focus on motivation and customization, thus making achieving goals more likely to become successful.[1] Exercise prescription should take into account the patient's medical history, and a pre-examination of a patient's physical fitness to make sure a person has the capacity to perform the exercises.[2]

Patient referral

In the United Kingdom there is a scheme called "Exercise on prescription" or "Exercise Referral" in which doctors are able to prescribe exercise to those with conditions that benefit from it, such as asthma, depression, or obesity. The initiative particularly aimed to lower the rate of heart disease. National standards for such initiatives from doctors were established by the Department of Health in 2001. Exercise on prescription aims to prevent deterioration of conditions, and views exercise as a preventative health measure. Fitness classes or a course at the local gym are available on prescription at a reduced rate to people who might benefit from them. It aims to make it easier for people to follow their doctors' advice about taking more exercise or losing weight.[3] Such preventative measures hope to lead to savings for the National Health Service.[4] Researchers in New Zealand have also discussed the benefits of exercise referral by medical practitioners there.[5] In New Zealand it is known as a green prescription, while in the United States a similar initiative is known as Exercise is Medicine. A green prescription is a referral given by a doctor or nurse to a patient, with exercise and lifestyle goals written on them. The term, used by health practitioners in New Zealand draws parallel to the usual prescriptions given to patients for medications, and emphasizes the importance of exercise in improving their condition, and not relying on drugs. The green prescription is written after discussing the issues and goals in the consultation. Studies have shown that an increase in exercise, better sense of well-being, and a decrease in blood pressure results from using the method. A decreased risk of coronary heart disease has not been shown. This was shown in two studies, one that surveyed patients in Auckland and Dunedin,[6] and another that was done in 42 practices in the same region of New Zealand.[7] General practitioners like the idea as it formalizes what they are telling the patient about how their lifestyle changes are necessary.[8] There has previously not been sufficient education of general practitioners on Exercise Prescription, compared to drug and procedural education, although the need to confidently prescribe exercise increases as the evidence shows of its benefits. If not confident or in difficult cases, General practitioners can refer on to Exercise physiologists, Physiotherapists or Sport & Exercise medicine specialists.[9] Research in Australia has suggested that an exercise prescription program would be very beneficial and many ICU physiotherapists are already performing this practice, however there is no national standards to govern how this practice is administered so there is great variety in the ways this is administered therefore more research is needed.[10][11]

For specific diseases

Osteoarthritis

Studies show that exercise prescription aids in both preventing and minimizing the effects of joint disorders such as osteoarthritis. Evidence shows that in addition to the general physiological, psychological and functional benefits gained from exercise, greater quadriceps strength has a mitigating effect on knee joint pain.[12]

Depression

A large body of research indicates that exercise prescription has beneficial effects for patients with depression. One study shows a significant improvement for a randomized group of women with major depressive disorder engaging in a twice-weekly resistance training program compared to a control group. The reasons for this marked change is thought to have biochemical, physiological and psychosocial aspects.[13]

Migraine

Although routine physical activity could be an aggravating factor for migraine, physical exercise is considered to be part of a non-pharmacological strategy for migraine prevention.[14] Migraine patients tend to have less pleasure in physical activity[15] due to fear-avoidance and anxiety sensitivity.[16]

Peripheral arterial disease (PAD)

Blockage or closing of the arteries of the lower limbs impairs blood flow to the legs and results in significant reduction in physical capacity. Alternate exercise prescriptions to walking are considered. Aerobic exercises such as arm-cranking or cycling are recommended. Risk factors for disease progression should also be taken into account when aiming to improve waling ability. Functional capacity should be determined prior to commencement of prescribe exercise programs.[17]

Diabetes mellitus

The number of individuals diagnosed with diabetes mellitus are rapidly increasing and a lot of evidence suggests this is due to an insufficiently active lifestyle.[18] Benefits of exercise include stress reduction, reduced risk of heart disease, lowers blood pressure, helps control weight and aids insulin in improving management of diabetes. Exercise that is not too strenuous is recommended. Such activities may include walking, swimming, gardening, cycling or golfing.[19] Incidental activities are encouraged, such as using the stairs instead of an escalator/lift or walking short distances instead of driving. Dr. Gebel, who works at James Cook University's Centre for Chronic Disease Prevention, conducted a study reporting increased health benefits through incorporation of more vigorous exercise. He stated that this could include 'vigorous gardening', not necessarily meaning going to the gym.[20] Diabetes Australia suggest 30 minutes of exercise daily as a suitable target, which can be divided into three 10-minute sessions throughout the day.[19] Exercise programs however should be tailored and delivered by individuals with appropriate qualifications.

Cancer

Exercise is not only recommended for preventing many types of cancer, but is now recommended as part of treatment for many cancers based on the results of scientific trials.[21][22][23]

Chronic obstructive pulmonary diseases (COPD)

Patients with COPD can have an improved quality of live if the correct exercise program is prescribed to them. This program should help increase aerobic capacity (rate that a person can take oxygen from the air), increase endurance, and decrease dyspnea (shortness of breath). [24]

Exercise recommendations

According to Exercise and Sport Science Australia, a minimum amount of 210 minutes of moderate intensity exercise or 125 minutes of vigorous intensity exercise should be performed per week. Exercise should include both aerobic and resistance training. For greater health benefits, exercise should be performed regularly with no more than a two-day gap between training sessions.[18] Exercise that improves cardiorespiratory fitness should be done 5–7 days a week for 30 to 60 minutes at a moderate intensity. If the exercise is done at a vigorous intensity the training sessions only have to be performed 3–5 days a week for 20 to 60 minutes each session. Flexibility should be trained for at least 10 minutes after a training session and should be done at least twice a week. [24]

Elderly

Research has found that having a well planned exercise routine can greatly benefit the elderly. It an reduce the risks of coronary heart disease, diabetes mellitus and insulin resilience, hypertension and obesity as well as vast improvements in bone density and muscle mass.[25]

Exercise program development

Exercise prescription is designed to modulate acute exercise programming variables to create the adaptations desired by the individual or sport. With aerobic exercise prescription, the type of exercise, duration of exercise, frequency, and duration is adjusted. For resistance exercise prescription, the type of exercise, total session volume, rest period, frequency, and intensity are determined.[26] Prescription of stretching and other activities is also commonly seen. Exercise prescription can be divided into 5 components:[1]

  • Type of exercise or activity (e.g., walking, swimming, cycling)
  • Specific workloads (e.g., watts, walking speed)[27]
  • Duration and frequency of the activity or exercise session
  • Intensity guidelines – Target heart rate (THR) range and estimated rate of perceived exertion (RPE)[28]
  • Precautions regarding certain orthopedic (or other) concerns or related comments

Education

Individuals interested in pursuing a career in exercise prescription have access to a range of educational options that provide the necessary knowledge and skills to design and implement effective exercise programs. These programs and courses offer comprehensive training in exercise physiology, kinesiology, biomechanics, and other related areas. Here are some notable educational options for aspiring exercise prescription professionals:

University Programs

Bachelor's Degree Programs: Many universities around the world offer Bachelor of Science (BS) or Bachelor of Applied Science (BASc) degrees in exercise science, exercise physiology, kinesiology, or related fields. These programs provide a solid foundation in exercise prescription, human anatomy, physiology, and biomechanics. Examples of universities offering such programs include the University of Florida, University of Texas at Austin, and Australian Catholic University. Master's Degree Programs: For individuals seeking advanced education in exercise prescription, various universities offer Master of Science (MS) or Master of Exercise Physiology (MEP) programs. These programs delve deeper into exercise physiology, research methodologies, and specialized areas such as clinical exercise physiology or performance enhancement. Noteworthy institutions offering master's degree programs in exercise prescription include the University of Connecticut, University of California, Los Angeles (UCLA), and University of Sydney. Doctoral Programs: Doctoral programs, such as Doctor of Philosophy (PhD) or Doctor of Exercise Science (EdD), are available for those aspiring to pursue research or academic careers in exercise prescription. These programs focus on advanced research, critical analysis of exercise interventions, and leadership in the field. Universities such as Loughborough University in the United Kingdom and the University of Western Ontario offer reputable doctoral programs in exercise physiology and related disciplines.

Certification and Professional Courses

American College of Sports Medicine (ACSM): ACSM offers various certifications and courses, including the Certified Exercise Physiologist (EP-C) and the Exercise is Medicine initiative. These certifications and courses validate expertise in exercise prescription and provide a recognized professional credential. National Academy of Sports Medicine (NASM): NASM offers certification programs such as the Certified Personal Trainer (CPT) and Corrective Exercise Specialist (CES). These certifications equip individuals with the knowledge and practical skills necessary for designing and implementing exercise programs tailored to specific client needs. Continuing Education Courses: Numerous organizations and institutions provide continuing education courses and workshops focused on exercise prescription. These short-term programs enable professionals to stay updated with the latest research and advances in the field, enhancing their skills and knowledge.

Online and Distance Learning

In addition to traditional university programs and certifications, online and distance learning options have become increasingly popular for individuals seeking flexibility in their education. Several universities and professional organizations offer online courses and programs that cover exercise prescription, physiology, and related topics. These online programs often provide interactive learning experiences and access to experienced instructors. It is important for individuals interested in pursuing educational options in exercise prescription to thoroughly research and assess the credibility, accreditation, and curriculum of the programs or certifications they are considering. Seeking out programs affiliated with reputable institutions and professional organizations can help ensure a high-quality education and enhance career prospects in the field of exercise prescription.

See also

References

  1. 1.0 1.1 Exercise Prescription at eMedicine
  2. "Exercise prescription and basic principles of therapeutic exercise – PM&R KnowledgeNow". 14 March 2017. Retrieved 2021-10-21.
  3. "Exercise on prescription". BBC News. April 5, 2001.
  4. [1] Exercise on prescription (Times)
  5. "Could a Green Prescription be the answer to NZ's obesity crisis?". www.noted.co.nz. Archived from the original on 21 August 2019. Retrieved 21 August 2019.
  6. Swinburn BA, Walter LG, Arroll B, Tilyard MW, Russell DG (1998). "The green prescription study: a randomized controlled trial of written exercise advice provided by general practitioners". Am J Public Health. 88 (2): 288–91. doi:10.2105/ajph.88.2.288. PMC 1508188. PMID 9491025.
  7. Elley CR, Kerse N, Arroll B, Robinson E (2003). "Effectiveness of counselling patients on physical activity in general practice: cluster randomised controlled trial". BMJ. 326 (7393): 793. doi:10.1136/bmj.326.7393.793. PMC 153098. PMID 12689976.
  8. Swinburn BA, Walter LG, Arroll B, Tilyard MW, Russell DG (1997). "Green prescriptions: attitudes and perceptions of general practitioners towards prescribing exercise". Br J Gen Pract. 47 (422): 567–9. PMC 1313106. PMID 9406491.
  9. Orchard, JW (April 2020). "Prescribing and dosing exercise in primary care". Australian Journal of General Practice. 49 (4): 182–186. doi:10.31128/AJGP-10-19-5110. PMID 32233343.
  10. Skinner, Elizabeth H.; Berney, Susan; Warrillow, Stephen; Denehy, Linda (2008). "Rehabilitation and exercise prescription in Australian intensive care units". Physiotherapy. 94 (3): 220–9. doi:10.1016/j.physio.2007.11.004.
  11. O'Hagan, Ciara; De Vito, Giuseppe; Boreham, Colin A. G. (2013). "Exercise Prescription in the Treatment of Type 2 Diabetes Mellitus". Sports Medicine. 43 (1): 39–49. doi:10.1007/s40279-012-0004-y. PMID 23315755. S2CID 207492859.
  12. O'Grady, Michael; Fletcher, Jacquelyn; Ortiz, Susan (2000). "Therapeutic and physical fitness exercise prescription for older adults with joint disease: an evidence-based approach". Rheumatic Disease Clinics of North America. 26 (3): 617–46. doi:10.1016/S0889-857X(05)70159-9. PMID 10989515.
  13. Stanton, Robert; Happell, Brenda M. (2013). "An Exercise Prescription Primer for People with Depression". Issues in Mental Health Nursing. 34 (8): 626–30. doi:10.3109/01612840.2012.758207. PMID 23909675. S2CID 20401112.
  14. Amin, Faisal Mohammad; Aristeidou, Stavroula; Baraldi, Carlo; Czapinska-Ciepiela, Ewa K.; Ariadni, Daponte D.; Di Lenola, Davide; Fenech, Cherilyn; Kampouris, Konstantinos; Karagiorgis, Giorgos; Braschinsky, Mark; Linde, Mattias (10 September 2018). "The association between migraine and physical exercise". The Journal of Headache and Pain. 19 (1): 83. doi:10.1186/s10194-018-0902-y. PMC 6134860. PMID 30203180.
  15. Oliveira, Arão Belitardo; Bachi, Andre Luis Lacerda; Ribeiro, Reinaldo Teixeira; Mello, Marco Túlio; Vaisberg, Mauro; Peres, Mario Fernando Prieto (2017). "Exercise-Induced Change in Plasma IL-12p70 Is Linked to Migraine Prevention and Anxiolytic Effects in Treatment-Naïve Women: A Randomized Controlled Trial". Neuroimmunomodulation. 24 (6): 293–299. doi:10.1159/000487141. PMID 29597198. S2CID 4470777.
  16. Farris, Samantha G; Thomas, J Graham; Abrantes, Ana M; Lipton, Richard B; Burr, Emily K; Godley, Frederick A; Roth, Julie L; Pavlovic, Jelena M; Bond, Dale S (July 2019). "Anxiety sensitivity and intentional avoidance of physical activity in women with probable migraine". Cephalalgia. 39 (11): 1465–1469. doi:10.1177/0333102419861712. PMID 31260336. S2CID 195772686.
  17. Askew, Christopher D.; Parmenter, Belinda; Leicht, Anthony S.; Walker, Philip J.; Golledge, Jonathan (2014). "Exercise & Sports Science Australia (ESSA) position statement on exercise prescription for patients with peripheral arterial disease and intermittent claudication". Journal of Science and Medicine in Sport. 17 (6): 623–9. doi:10.1016/j.jsams.2013.10.251. PMID 24315956.
  18. 18.0 18.1 Hordern, Matthew D.; Dunstan, David W.; Prins, Johannes B.; Baker, Michael K.; Singh, Maria A. Fiatarone; Coombes, Jeff S. (2012). "Exercise prescription for patients with type 2 diabetes and pre-diabetes: A position statement from Exercise and Sport Science Australia". Journal of Science and Medicine in Sport. 15 (1): 25–31. doi:10.1016/j.jsams.2011.04.005. PMID 21621458.
  19. 19.0 19.1 "Diabetes and Exercise - Keeping Active". Diabetes Australia. 3 November 2014. Retrieved 17 April 2015.
  20. Walton, Alice. "Vigorous Exercise Linked To Longer Life, Study Says". Forbs. Retrieved 17 April 2015.
  21. Christensen, JF; Simonsen, C; Hojman, P (13 December 2018). "Exercise Training in Cancer Control and Treatment". Comprehensive Physiology. 9 (1): 165–205. doi:10.1002/cphy.c180016. PMID 30549018. S2CID 56492477.
  22. Ashcraft, KA; Warner, AB; Jones, LW; Dewhirst, MW (January 2019). "Exercise as Adjunct Therapy in Cancer". Seminars in Radiation Oncology. 29 (1): 16–24. doi:10.1016/j.semradonc.2018.10.001. PMC 6656408. PMID 30573180.
  23. Cormie, P; Trevaskis, M; Thornton-Benko, E; Zopf, EM (April 2020). "Exercise medicine in cancer care". Australian Journal of General Practice. 49 (4): 169–174. doi:10.31128/AJGP-08-19-5027. PMID 32233341.
  24. 24.0 24.1 Medicine., American College of Sports (2005). ACSM's resource manual for guidelines for exercise testing and prescription. Lippincott. ISBN 0-7817-4591-8. OCLC 876919973.
  25. Mazzeo, Robert S.; Tanaka, Hirofumi (2001). "Exercise Prescription for the Elderly". Sports Medicine. 31 (11): 809–18. doi:10.2165/00007256-200131110-00003. PMID 11583105. S2CID 8494841.
  26. Kraemer, William J.; Fleck, Steven J.; Deschenes, Michael R. (2011). "Exercise Testing for Health, Physical Fitness, and Predicting Sport Performance". Exercise Physiology: Integrating Theory and Application. Lippincott Williams & Wilkins. pp. 385–414. ISBN 978-0-7817-8351-4.
  27. Vogiatzis, Ioannis (1999). "Physiological Response to Moderate Exercise Workloads in a Pulmonary Rehabilitation Program in Patients With Varying Degrees of Airflow Obstruction". Chest. 116 (5): 1200–7. doi:10.1378/chest.116.5.1200. PMID 10559076.
  28. "Can you sing while you work out?". Mayo Clinic.