Pseudomonas luteola

From The Right Wiki
Revision as of 20:34, 16 January 2024 by imported>Tom.Reding (WP:TREE cleanup++ and/or WP:GenFixes, typo(s) fixed: from 45.87–50.81 → from 45.87 to 50.81)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Pseudomonas luteola
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species:
P. luteola
Binomial name
Pseudomonas luteola
Kodoma, et al., 1985
Type strain
ATCC 43273

CCUG 37974
CFBP 3007
CIP 102995
DSM 6975
IAM 13000
JCM 3352
LMG 7041

Synonyms

Chryseomonas luteola (Kodama et al. 1985) Holmes et al. 1987[1]
Chryseomonas polytrichaHolmes et al. 1986

Pseudomonas luteola is an opportunistic pathogen, found ubiquitously in damp environments. Originally designated in the genus Chryseomonas, the species has since been reassigned to the genus Pseudomonas.

Morphology

Pseudomonas luteola is a Gram-negative, motile aerobe. Its motility is created by multitrichous flagella. They grow as rods of 0.8 μm to 2.5 μm.[2] Colonies produce a yellow-orange pigment. Optimal temperature for growth is 30 °C. Importantly for classification, it grows best on heart infusion agar supplemented with 5% horse blood.[3] It is also able to grow on TSA, Nutrient Agar, Mac Conkey or CASA Agar.[2]

Biosorption

Pseudomonas luteola can absorb certain heavy metals such as Cr(VI) and Al(III).[4] Both ions are found in industrial wastewaters.[4] These metals are specifically targeted by P. luteola strain TEM05.[4] Under relatively acidic conditions (pH: 4 and 5 for each ion respectively).[4] Experiments indicated a maximum adsorption capacity of 55.2 mg g−1 for Al(III) and 3.0 mg g−1 for Cr(VI).[4] This same strain is also known to produce an exopolysaccharide (EPS) utilized in the adsorption of nickel and copper.[5] In order to adsorb Ni and Cu at significant levels, the strain must be immobilized in a calcium alginate beads. With this enhancement, maximum adsorption capacities range from 45.87 to 50.81 mg g−1 and 52.91–61.73 mg g−1, respectively.[5]

Pathenogenicity

The pathogenic form of Pseudomonas luteola is a saprophyte.[2] It is an opportunistic pathogen that can cause bacteremia, meningitis, prosthetic valve endocarditis, peritonitis in humans and animals.[2] P. luteola is registered by the CDC as group Ve-1.[3] Most strains are susceptible to broad-spectrum antibiotics, such as cephalosporins, aminosids, and ciprofloxacin.[3] However, infections associated with foreign material are highly resistant, and infected prostheses have to be removed if possible.[3]

References

  1. Anzai, Yojiro; Kudo, Yuko; Oyaizu, Hiroshi (1997). "The Phylogeny of the Genera Chryseomonas, Flavimonas, and Pseudomonas Supports Synonymy of These Three Genera". International Journal of Systematic Bacteriology. 47 (2): 249–51. doi:10.1099/00207713-47-2-249. PMID 9103607.
  2. Jump up to: 2.0 2.1 2.2 2.3 http://www.tgw1916.net/Pseudomonas/luteola.html[full citation needed]
  3. Jump up to: 3.0 3.1 3.2 3.3 Chihab, Wafae; Alaoui, Ahmed S.; Amar, Mohamed (2004). "Chryseomonas luteola Identified as the Source of Serious Infections in a Moroccan University Hospital". Journal of Clinical Microbiology. 42 (4): 1837–9. doi:10.1128/JCM.42.4.1837-1839.2004. PMC 387548. PMID 15071064.
  4. Jump up to: 4.0 4.1 4.2 4.3 4.4 Ozdemir, G.; Baysal, S. H. (2004). "Chromium and aluminum biosorption on Chryseomonas luteola TEM05". Applied Microbiology and Biotechnology. 64 (4): 599–603. doi:10.1007/s00253-003-1479-0. PMID 14605774. S2CID 19249477.
  5. Jump up to: 5.0 5.1 Ozdemir, Guven; Ceyhan, Nur; Manav, Ebru (2005). "Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions". Bioresource Technology. 96 (15): 1677–82. doi:10.1016/j.biortech.2004.12.031. PMID 16023570.

External links