List of convolutions of probability distributions

From The Right Wiki
Revision as of 18:36, 12 September 2023 by imported>Smasongarrison (Removing from Category:Mathematics-related lists Diffusing per WP:DIFFUSE using Cat-a-lot)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively. Many well known distributions have simple convolutions. The following is a list of these convolutions. Each statement is of the form

i=1nXiY

where X1,X2,,Xn are independent random variables, and Y is the distribution that results from the convolution of X1,X2,,Xn. In place of Xi and Y the names of the corresponding distributions and their parameters have been indicated.

Discrete distributions

  • i=1nBernoulli(p)Binomial(n,p)0<p<1n=1,2,
  • i=1nBinomial(ni,p)Binomial(i=1nni,p)0<p<1ni=1,2,
  • i=1nNegativeBinomial(ni,p)NegativeBinomial(i=1nni,p)0<p<1ni=1,2,
  • i=1nGeometric(p)NegativeBinomial(n,p)0<p<1n=1,2,
  • i=1nPoisson(λi)Poisson(i=1nλi)λi>0

Continuous distributions

  • i=1nStable(α,βi,ci,μi)=Stable(α,i=1nβiciαi=1nciα,(i=1nciα)1/α,i=1nμi)

0<αi21βi1ci>0<μi< The following three statements are special cases of the above statement:

  • i=1nNormal(μi,σi2)Normal(i=1nμi,i=1nσi2)<μi<σi2>0(α=2,βi=0)
  • i=1nCauchy(ai,γi)Cauchy(i=1nai,i=1nγi)<ai<γi>0(α=1,βi=0)
  • i=1nLevy(μi,ci)Levy(i=1nμi,(i=1nci)2)<μi<ci>0(α=1/2,βi=1)
  • i=1nGamma(αi,β)Gamma(i=1nαi,β)αi>0β>0
  • i=1nVoigt(μi,γi,σi)Voigt(i=1nμi,i=1nγi,i=1nσi2)<μi<γi>0σi>0[1]
  • i=1nVarianceGamma(μi,α,β,λi)VarianceGamma(i=1nμi,α,β,i=1nλi)<μi<λi>0α2β2>0[2]
  • i=1nExponential(θ)Erlang(n,θ)θ>0n=1,2,
  • i=1nExponential(λi)Hypoexponential(λ1,,λn)λi>0[3]
  • i=1nχ2(ri)χ2(i=1nri)ri=1,2,
  • i=1rN2(0,1)χr2r=1,2,
  • i=1n(XiX¯)2σ2χn12, where X1,,Xn is a random sample from N(μ,σ2) and X¯=1ni=1nXi.

Mixed distributions:

  • Normal(μ,σ2)+Cauchy(x0,γ)Voigt(μ+x0,σ,γ)<μ<<x0<γ>0σ>0

See also

References

  1. "VoigtDistribution". Wolfram Language Documentation. 2016 [2012]. Retrieved 2021-04-08.
  2. "VarianceGammaDistribution". Wolfram Language Documentation (published 2016). 2012. Retrieved 2021-04-09.
  3. Yanev, George P. (2020-12-15). "Exponential and Hypoexponential Distributions: Some Characterizations". Mathematics. 8 (12): 2207. arXiv:2012.08498. doi:10.3390/math8122207.

Sources