Reeb vector field

From The Right Wiki
Revision as of 04:46, 19 April 2024 by imported>WikiCleanerBot (v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

In mathematics, the Reeb vector field, named after the French mathematician Georges Reeb, is a notion that appears in various domains of contact geometry including:

Definition

Let ξ be a contact vector field on a manifold M of dimension 2n+1. Let ξ=Kerα for a 1-form α on M such that α(dα)n0. Given a contact form α, there exists a unique field (the Reeb vector field) Xα on M such that:[3]

  • i(Xα)dα=0
  • i(Xα)α=1

.

See also

References

  • Blair, David E. (2010). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Vol. 203 (Second edition of 2002 original ed.). Boston, MA: Birkhäuser Boston, Ltd. doi:10.1007/978-0-8176-4959-3. ISBN 978-0-8176-4958-6. MR 2682326. Zbl 1246.53001.
  • McDuff, Dusa; Salamon, Dietmar (2017). Introduction to symplectic topology. Oxford Graduate Texts in Mathematics (Third edition of 1995 original ed.). Oxford: Oxford University Press. doi:10.1093/oso/9780198794899.001.0001. ISBN 978-0-19-879490-5. MR 3674984. Zbl 1380.53003.