Bogomol'nyi–Prasad–Sommerfield state

From The Right Wiki
(Redirected from BPS state)
Jump to navigationJump to search

In theoretical physics, massive representations of an extended supersymmetry algebra called BPS states have mass equal to the supersymmetry central charge Z. Quantum mechanically, if the supersymmetry remains unbroken, exact equality to the modulus of Z exists. Their importance arises as the supermultiplets shorten for generic massive representations, with stability and mass formula exact.

d = 4 N = 2

The generators for the odd part of the superalgebra have relations:[1]

{QαA,Q¯β˙B}=2σαβ˙mPmδBA{QαA,QβB}=2ϵαβϵABZ¯{Q¯α˙A,Q¯β˙B}=2ϵα˙β˙ϵABZ

where: αβ˙ are the Lorentz group indices, A and B are R-symmetry indices. Take linear combinations of the above generators as follows:

RαA=ξ1QαA+ξσαβ˙0Q¯β˙BTαA=ξ1QαAξσαβ˙0Q¯β˙B

Consider a state ψ which has 4 momentum (M,0,0,0). Applying the following operator to this state gives:

(R11+(R11))2ψ=4(M+Re(Zξ2))ψ

But because this is the square of a Hermitian operator, the right hand side coefficient must be positive for all ξ. In particular the strongest result from this is

M|Z|

Example applications

See also

References

  1. Moore, Gregory, PiTP Lectures on BPS States and Wall-Crossing in d=4, N=2 Theories (PDF)
  2. Strominger, A.; Vafa, C. (1996). "Microscopic origin of the Bekenstein-Hawking entropy". Physics Letters B. 379 (1–4): 99–104. arXiv:hep-th/9601029. Bibcode:1996PhLB..379...99S. doi:10.1016/0370-2693(96)00345-0. S2CID 1041890.
  3. Olsen, Kasper; Szabo, Richard (2000). "Constructing D-Branes from K-Theory" (PDF). Advances in Theoretical and Mathematical Physics. 4: 889–1025.