Carbon footprint

From The Right Wiki
(Redirected from Climate footprint)
Jump to navigationJump to search

File:Environmental-impact-of-food-by-life-cycle-stage.png
The carbon footprint can be used to compare the climate change impact of many things. The example given here is the carbon footprint (greenhouse gas emissions) of food across the supply chain caused by land use change, farm, animal feed, processing, transport, retail, packing, losses.[1]

A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal. Similarly, an organization's carbon footprint includes the direct as well as the indirect emissions that it causes. The Greenhouse Gas Protocol (for carbon accounting of organizations) calls these Scope 1, 2 and 3 emissions. There are several methodologies and online tools to calculate the carbon footprint. They depend on whether the focus is on a country, organization, product or individual person. For example, the carbon footprint of a product could help consumers decide which product to buy if they want to be climate aware. For climate change mitigation activities, the carbon footprint can help distinguish those economic activities with a high footprint from those with a low footprint. So the carbon footprint concept allows everyone to make comparisons between the climate impacts of individuals, products, companies and countries. It also helps people devise strategies and priorities for reducing the carbon footprint. The carbon dioxide equivalent (CO2eq) emissions per unit of comparison is a suitable way to express a carbon footprint. This sums up all the greenhouse gas emissions. It includes all greenhouse gases, not just carbon dioxide. And it looks at emissions from economic activities, events, organizations and services.[2] In some definitions, only the carbon dioxide emissions are taken into account. These do not include other greenhouse gases, such as methane and nitrous oxide.[3] Various methods to calculate the carbon footprint exist, and these may differ somewhat for different entities. For organizations it is common practice to use the Greenhouse Gas Protocol. It includes three carbon emission scopes. Scope 1 refers to direct carbon emissions. Scope 2 and 3 refer to indirect carbon emissions. Scope 3 emissions are those indirect emissions that result from the activities of an organization but come from sources which they do not own or control.[4] For countries it is common to use consumption-based emissions accounting to calculate their carbon footprint for a given year. Consumption-based accounting using input-output analysis backed by super-computing makes it possible to analyse global supply chains. Countries also prepare national GHG inventories for the UNFCCC.[5][6] The GHG emissions listed in those national inventories are only from activities in the country itself. This approach is called territorial-based accounting or production-based accounting. It does not take into account production of goods and services imported on behalf of residents. Consumption-based accounting does reflect emissions from goods and services imported from other countries. Consumption-based accounting is therefore more comprehensive. This comprehensive carbon footprint reporting including Scope 3 emissions deals with gaps in current systems. Countries' GHG inventories for the UNFCCC do not include international transport.[7] Comprehensive carbon footprint reporting looks at the final demand for emissions, to where the consumption of the goods and services takes place.[8]

Definition

File:Carbon Footprint simple-explanation EN.webm
The carbon footprint explained
File:Carbon-footprint-of-protein-foods-2.png
Comparison of the carbon footprint of protein-rich foods[1]

A formal definition of carbon footprint is as follows: "A measure of the total amount of carbon dioxide (CO2) and methane (CH4) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent using the relevant 100-year global warming potential (GWP100)."[9] Scientists report carbon footprints in terms of equivalents of tonnes of CO2 emissions (CO2-equivalent). They may report them per year, per person, per kilogram of protein, per kilometer travelled, and so on. In the definition of carbon footprint, some scientists include only CO2. But more commonly they include several of the notable greenhouse gases. They can compare various greenhouse gases by using carbon dioxide equivalents over a relevant time scale, like 100 years. Some organizations use the term greenhouse gas footprint or climate footprint[10] to emphasize that all greenhouse gases are included, not just carbon dioxide. The Greenhouse Gas Protocol includes all of the most important greenhouse gases. "The standard covers the accounting and reporting of seven greenhouse gases covered by the Kyoto Protocol – carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PCFs), sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3)."[11] In comparison, the IPCC definition of carbon footprint in 2022 covers only carbon dioxide. It defines the carbon footprint as the "measure of the exclusive total amount of emissions of carbon dioxide (CO2) that is directly and indirectly caused by an activity or is accumulated over the lifecycle stages of a product."[3]: 1796  The IPCC report's authors adopted the same definition that had been proposed in 2007 in the UK.[12] That publication included only carbon dioxide in the definition of carbon footprint. It justified this with the argument that other greenhouse gases were more difficult to quantify. This is because of their differing global warming potentials. They also stated that an inclusion of all greenhouse gases would make the carbon footprint indicator less practical.[12] But there are disadvantages to this approach. One disadvantage of not including methane is that some products or sectors that have a high methane footprint such as livestock[13] appear less harmful for the climate than they actually are.[14]

Types of greenhouse gas emissions

File:Scope3 Calculation Guidance -updated.png
Overview of Greenhouse Gas Protocol scopes and emissions across the value chain, showing upstream activities, reporting company and downstream activities.[15][16]

The greenhouse gas protocol is a set of standards for tracking greenhouse gas emissions.[17] The standards divide emissions into three scopes (Scope 1, 2 and 3) within the value chain.[18] Greenhouse gas emissions caused directly by the organization such as by burning fossil fuels are referred to as Scope 1. Emissions caused indirectly by an organization, such as by purchasing secondary energy sources like electricity, heat, cooling or steam are called Scope 2. Lastly, indirect emissions associated with upstream or downstream processes are called Scope 3.

Direct carbon emissions (Scope 1)

Direct or Scope 1 carbon emissions come from sources on the site that is producing a product or delivering a service.[19][20] An example for industry would be the emissions from burning a fuel on site. On the individual level, emissions from personal vehicles or gas-burning stoves are Scope 1.

Indirect carbon emissions (Scope 2)

Indirect carbon emissions are emissions from sources upstream or downstream from the process being studied. They are also known as Scope 2 or Scope 3 emissions.[19] Scope 2 emissions are the indirect emissions related to purchasing electricity, heat, or steam used on site.[20] Examples of upstream carbon emissions include transportation of materials and fuels, any energy used outside of the production facility, and waste produced outside the production facility.[21] Examples of downstream carbon emissions include any end-of-life process or treatments, product and waste transportation, and emissions associated with selling the product.[22] The GHG Protocol says it is important to calculate upstream and downstream emissions. There could be some double counting. This is because upstream emissions of one person's consumption patterns could be someone else's downstream emissions

Other indirect carbon emissions (Scope 3)

Scope 3 emissions are all other indirect emissions derived from the activities of an organization. But they are from sources they do not own or control.[4] The GHG Protocol's Corporate Value Chain (Scope 3) Accounting and Reporting Standard allows companies to assess their entire value chain emissions impact and identify where to focus reduction activities.[23] Scope 3 emission sources include emissions from suppliers and product users. These are also known as the value chain. Transportation of good, and other indirect emissions are also part of this scope.[16] In 2022 about 30% of US companies reported Scope 3 emissions.[24] The International Sustainability Standards Board is developing a recommendation to include Scope 3 emissions in all GHG reporting.[25]

Purpose and strengths

File:Are consumption-based CO₂ per capita emissions above or below the global average., OWID.svg
Are consumption-based CO₂ per capita emissions above or below the global average[26]

The current rise in global average temperature is more rapid than previous changes. It is primarily caused by humans burning fossil fuels.[27][28] The increase in greenhouse gases in the atmosphere is also due to deforestation and agricultural and industrial practices. These include cement production. The two most notable greenhouse gases are carbon dioxide and methane.[29] Greenhouse gas emissions, and hence humanity's carbon footprint, have been increasing during the 21st century.[30] The Paris Agreement aims to reduce greenhouse gas emissions enough to limit the rise in global temperature to no more than 1.5°C above pre-industrial levels.[31][32] The carbon footprint concept makes comparisons between the climate impacts of individuals, products, companies and countries. A carbon footprint label on products could enable consumers to choose products with a lower carbon footprint if they want to help limit climate change. For meat products, as an example, such a label could make it clear that beef has a higher carbon footprint than chicken.[1] Understanding the size of an organization's carbon footprint makes it possible to devise a strategy to reduce it. For most businesses the vast majority of emissions do not come from activities on site, known as Scope 1, or from energy supplied to the organization, known as Scope 2, but from Scope 3 emissions, the extended upstream and downstream supply chain.[33][34] Therefore, ignoring Scope 3 emissions makes it impossible to detect all emissions of importance, which limits options for mitigation.[35] Large companies in sectors such as clothing or automobiles would need to examine more than 100,000 supply chain pathways to fully report their carbon footprints.[36] The importance of displacement of carbon emissions has been known for some years. Scientists also call this carbon leakage.[37] The idea of a carbon footprint addresses concerns of carbon leakage which the Paris Agreement does not cover. Carbon leakage occurs when importing countries outsource production to exporting countries. The outsourcing countries are often rich countries while the exporters are often low-income countries.[38][37] Countries can make it appear that their GHG emissions are falling by moving "dirty" industries abroad, even if their emissions could be increasing when looked at from a consumption perspective.[39][40] Carbon leakage and related international trade have a range of environmental impacts. These include increased air pollution,[41] water scarcity,[42] biodiversity loss,[43] raw material usage,[44] and energy depletion.[45] Scholars have argued in favour of using both consumption-based and production-based accounting. This helps establish shared producer and consumer responsibility.[46] Currently countries report on their annual GHG inventory to the UNFCCC based on their territorial emissions. This is known as the territorial-based or production-based approach.[6][5] Including consumption-based calculations in the UNFCCC reporting requirements would help close loopholes by addressing the challenge of carbon leakage.[41] The Paris Agreement currently does not require countries to include in their national totals GHG emissions associated with international transport. These emissions are reported separately. They are not subject to the limitation and reduction commitments of Annex 1 Parties under the Climate Convention and Kyoto Protocol.[7] The carbon footprint methodology includes GHG emissions associated with international transport, thereby assigning emissions caused by international trade to the importing country.

Underlying concepts for calculations

The calculation of the carbon footprint of a product, service or sector requires expert knowledge and careful examination of what is to be included. Carbon footprints can be calculated at different scales. They can apply to whole countries, cities,[47] neighborhoods and also sectors, companies and products.[48] Several free online carbon footprint calculators exist to calculate personal carbon footprints.[49][50] Software such as the "Scope 3 Evaluator" can help companies report emissions throughout their value chain.[51] The software tools can help consultants and researchers to model global sustainability footprints. In each situation there are a number of questions that need to be answered. These include which activities are linked to which emissions, and which proportion should be attributed to which company. Software is essential for company management. But there is a need for new ways of enterprise resource planning to improve corporate sustainability performance.[52] To achieve 95% carbon footprint coverage, it would be necessary to assess 12 million individual supply-chain contributions. This is based on analyzing 12 sectoral case studies.[53] The Scope 3 calculations can be made easier using input-output analysis. This is a technique originally developed by Nobel Prize-winning economist Wassily Leontief.[53]

Consumption-based emission accounting based on input-output analysis

File:Consumption-based vs. production-based CO₂ emissions per capita, OWID.svg
Consumption-based vs. production-based CO₂ emissions per capita[54]
File:Production vs. consumption-based CO₂ emissions, OWID.svg
Production vs. consumption-based CO₂ emissions for the United States
File:Production vs. consumption-based CO₂ emissions per capita, OWID.svg
Production vs. consumption-based CO₂ emissions per capita for China

Consumption-based emission accounting traces the impacts of demand for goods and services along the global supply chain to the end-consumer. It is also called consumption-based carbon accounting.[8] In contrast, a production-based approach to calculating GHG emissions is not a carbon footprint analysis. This approach is also called a territorial-based approach. The production-based approach includes only impacts physically produced in the country in question.[55] Consumption-based accounting redistributes the emissions from production-based accounting. It considers that emissions in another country are necessary for the home country's consumption bundle.[55] Consumer-based accounting is based on input-output analysis. It is used at the highest levels for any economic research question related to environmental or social impacts.[56] Analysis of global supply chains is possible using consumption-based accounting with input-output analysis assisted by super-computing capacity. Leontief created Input-output analysis (IO) to demonstrate the relationship between consumption and production in an economy. It incorporates the entire supply chain. It uses input-output tables from countries' national accounts. It also uses international data such as UN Comtrade and Eurostat. Input-output analysis has been extended globally to multi-regional input-output analysis (MRIO). Innovations and technology enabling the analysis of billions of supply chains made this possible. Standards set by the United Nations underpin this analysis.[57]: 280  The analysis enables a Structural Path Analysis. This scans and ranks the top supply chain nodes and paths. It conveniently lists hotspots for urgent action. Input-output analysis has increased in popularity because of its ability to examine global value chains.[58][59]

Combination with life cycle analysis (LCA)

File:Life cycle analysis and GHG carbon accounting.jpg
Life cycle analysis: The full life cycle includes a production chain (comprising supply chains, manufacture, and transport), the energy supply chain, the use phase, and the end of life (disposal, recycle) stage.

Life cycle assessment (LCA) is a methodology for assessing all environmental impacts associated with the life cycle of a commercial product, process, or service. It is not limited to the greenhouse gas emissions. It is also called life cycle analysis. It includes water pollution, air pollution, ecotoxicity and similar types of pollution. Some widely recognized procedures for LCA are included in the ISO 14000 series of environmental management standards. A standard called ISO 14040:2006 provides the framework for conducting an LCA study.[60] ISO 14060 family of standards provides further sophisticated tools. These are used to quantify, monitor, report and validate or verify GHG emissions and removals.[61] Greenhouse gas product life cycle assessments can also comply with specifications such as Publicly Available Specification (PAS) 2050 and the GHG Protocol Life Cycle Accounting and Reporting Standard.[62][63] An advantage of LCA is the high level of detail that can be obtained on-site or by liaising with suppliers. However, LCA has been hampered by the artificial construction of a boundary after which no further impacts of upstream suppliers are considered. This can introduce significant truncation errors. LCA has been combined with input-output analysis. This enables on-site detailed knowledge to be incorporated. IO connects to global economic databases to incorporate the entire supply chain.[64]

Problems

Shifting responsibility from corporations to individuals

Critics argue that the original aim of promoting the personal carbon footprint concept was to shift responsibility away from corporations and institutions and on to personal lifestyle choices.[65][66] The fossil fuel company BP ran a large advertising campaign for the personal carbon footprint in 2005 which helped popularize this concept.[65] This strategy, employed by many major fossil fuel companies, has been criticized for trying to shift the blame for negative consequences of those industries on to individual choices.[65][67] Geoffrey Supran and Naomi Oreskes of Harvard University argue that concepts such as carbon footprints "hamstring us, and they put blinders on us, to the systemic nature of the climate crisis and the importance of taking collective action to address the problem".[68][69]

Relationship with other environmental impacts

A focus on carbon footprints can lead people to ignore or even exacerbate other related environmental issues of concern. These include biodiversity loss, ecotoxicity, and habitat destruction. It may not be easy to measure these other human impacts on the environment with a single indicator like the carbon footprint. Consumers may think that the carbon footprint is a proxy for environmental impact. In many cases this is not correct.[70]: 222  There can be trade-offs between reducing carbon footprint and environmental protection goals. One example is the use of biofuel, a renewable energy source and can reduce the carbon footprint of energy supply but can also pose ecological challenges during its production. This is because it is often produced in monocultures with ample use of fertilizers and pesticides.[70]: 222  Another example is offshore wind parks, which could have unintended impacts on marine ecosystems.[70]: 223  The carbon footprint analysis solely focuses on greenhouse gas emissions, unlike a life-cycle assessment which is much broader and looks at all environmental impacts. Therefore, it is useful to stress in communication activities that the carbon footprint is just one in a family of indicators (e.g. ecological footprint, water footprint, land footprint, and material footprint), and should not be looked at in isolation.[71] In fact, carbon footprint can be treated as one component of ecological footprint.[72][12] The "Sustainable Consumption and Production Hotspot Analysis Tool" (SCP-HAT) is a tool to place carbon footprint analysis into a wider perspective. It includes a number of socio-economic and environmental indicators.[73][74] It offers calculations that are either consumption-based, following the carbon footprint approach, or production-based. The database of the SCP-HAT tool is underpinned by input–output analysis. This means it includes Scope 3 emissions. The IO methodology is also governed by UN standards.[57]: 280  It is based on input-output tables of countries' national accounts and international trade data such as UN Comtrade,[75] and therefore it is comparable worldwide.[74]

Differing boundaries for calculations

The term carbon footprint has been applied to limited calculations that do not include Scope 3 emissions or the entire supply chain. This can lead to claims of misleading customers with regards to the real carbon footprints of companies or products.[36]

Reported values

Greenhouse gas emissions overview

File:20210626 Variwide chart of greenhouse gas emissions per capita by country.svg
Greenhouse gas emissions per person in the highest-emitting countries.[76] Areas of rectangles represent total emissions for each country.

Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide (CO2), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before.[77] Total cumulative emissions from 1870 to 2022 were 703 GtC (2575 GtCO2), of which 484±20 GtC (1773±73 GtCO2) from fossil fuels and industry, and 219±60 GtC (802±220 GtCO2) from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.[78][79] Carbon dioxide (CO2) is the main greenhouse gas resulting from human activities. It accounts for more than half of warming. Methane (CH4) emissions have almost the same short-term impact.[80] Nitrous oxide (N2O) and fluorinated gases (F-gases) play a lesser role in comparison. Emissions of carbon dioxide, methane and nitrous oxide in 2023 were all higher than ever before.[81] Electricity generation, heat and transport are major emitters; overall energy is responsible for around 73% of emissions.[82] Deforestation and other changes in land use also emit carbon dioxide and methane. The largest source of anthropogenic methane emissions is agriculture, closely followed by gas venting and fugitive emissions from the fossil-fuel industry. The largest agricultural methane source is livestock. Agricultural soils emit nitrous oxide partly due to fertilizers. Similarly, fluorinated gases from refrigerants play an outsized role in total human emissions. The current CO2-equivalent emission rates averaging 6.6 tonnes per person per year,[83] are well over twice the estimated rate 2.3 tons[84][85] required to stay within the 2030 Paris Agreement increase of 1.5 °C (2.7 °F) over pre-industrial levels.[86] Annual per capita emissions in the industrialized countries are typically as much as ten times the average in developing countries.[87]

The carbon footprint (or greenhouse gas footprint) serves as an indicator to compare the amount of greenhouse gases emitted over the entire life cycle from the production of a good or service along the supply chain to its final consumption.[88][89] Carbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas an organization emits.[90]

By products

File:Carbon-footprint-of-EU-diets-by-supply-chain.png
Carbon footprint of EU diets by supply chain

The Carbon Trust has worked with UK manufacturers to produce "thousands of carbon footprint assessments". As of 2014 the Carbon Trust state they have measured 28,000 certifiable product carbon footprints.[91]

Food

Plant-based foods tend to have a lower carbon footprint than meat and dairy. In many cases a much smaller footprint. This holds true when comparing the footprint of foods in terms of their weight, protein content or calories.[1] The protein output of peas and beef provides an example. Producing 100 grams of protein from peas emits just 0.4 kilograms of carbon dioxide equivalents (CO2eq). To get the same amount of protein from beef, emissions would be nearly 90 times higher, at 35 kgCO2eq.[1] Only a small fraction of the carbon footprint of food comes from transport and packaging. Most of it comes from processes on the farm, or from land use change. This means the choice of what to eat has a larger potential to reduce carbon footprint than how far the food has traveled, or how much packaging it is wrapped in.[1]

By sector

The IPCC Sixth Assessment Report found that global GHG emissions have continued to rise across all sectors. Global consumption was the main cause. The most rapid growth was in transport and industry.[92] A key driver of global carbon emissions is affluence. The IPCC noted that the wealthiest 10% in the world contribute between about one third to one half (36%–45%) of global GHG emissions. Researcheres have previously found that affluence is the key driver of carbon emissions. It has a bigger impact than population growth. And it counters the effects of technological developments. Continued economic growth mirrors the increasing trend in material extraction and GHG emissions.[93] “Industrial emissions have been growing faster since 2000 than emissions in any other sector, driven by increased basic materials extraction and production,” the IPCC said.[94]

Transport

File:Carbon-footprint-travel-mode.png
Comparison to show which form of transport has the smallest carbon footprint[95]

There can be wide variations in emissions for transport of people. This is due to various factors. They include the length of the trip, the source of electricity in the local grid and the occupancy of public transport. In the case of driving the type of vehicle and number of passengers are factors.[95] Over short to medium distances, walking or cycling are nearly always the lowest carbon way to travel. The carbon footprint of cycling one kilometer is usually in the range of 16 to 50 grams CO2eq per km. For moderate or long distances, trains nearly always have a lower carbon footprint than other options.[95]

By organization

Carbon accounting

Carbon accounting (or greenhouse gas accounting) is a framework of methods to measure and track how much greenhouse gas (GHG) an organization emits.[96] It can also be used to track projects or actions to reduce emissions in sectors such as forestry or renewable energy. Corporations, cities and other groups use these techniques to help limit climate change. Organizations will often set an emissions baseline, create targets for reducing emissions, and track progress towards them. The accounting methods enable them to do this in a more consistent and transparent manner. The main reasons for GHG accounting are to address social responsibility concerns or meet legal requirements. Public rankings of companies, financial due diligence and potential cost savings are other reasons. GHG accounting methods help investors better understand the climate risks of companies they invest in. They also help with net zero emission goals of corporations or communities. Many governments around the world require various forms of reporting. There is some evidence that programs that require GHG accounting help to lower emissions.[97] Markets for buying and selling carbon credits depend on accurate measurement of emissions and emission reductions. These techniques can help to understand the impacts of specific products and services. They do this by quantifying their GHG emissions throughout their lifecycle (carbon footprint). These techniques can be used at different scales, from those of companies and cities, to the greenhouse gas inventories of entire nations. They require measurements, calculations and estimates. A variety of standards and guidelines can apply, including the Greenhouse Gas Protocol and ISO 14064. These usually group the emissions into three categories. The Scope 1 category includes the direct emissions from an organization's facilities. Scope 2 includes the emissions from energy purchased by the organization. Scope 3 includes other indirect emissions, such as those from suppliers and from the use of the organization's products.[98][99]

There are a number of challenges in creating accurate accounts of greenhouse gas emissions. Scope 3 emissions, in particular, can be difficult to estimate. For example, problems with additionality and double counting issues can affect the credibility of carbon offset schemes. Accuracy checks on accounting reports from companies and projects are important. Organizations like Climate Trace are now able to check reports against actual emissions via the use of satellite imagery and AI techniques.[100]

By country

File:Consumption-based CO₂ emissions per capita, OWID.svg
Consumption-based CO₂ emissions per capita, 2017

CO2 emissions of countries are typically measured on the basis of production. This accounting method is sometimes referred to as territorial emissions. Countries use it when they report their emissions, and set domestic and international targets such as Nationally Determined Contributions.[6] Consumption-based emissions on the other hand are adjusted for trade. To calculate consumption-based emissions analysts have to track which goods are traded across the world. Whenever a product is imported, all CO2 emissions that were emitted in the production of that product are included. Consumption-based emissions reflect the lifestyle choices of a country's citizens.[5]

According to the World Bank, the global average carbon footprint in 2014 was about 5 tonnes of CO2 per person, measured on a production basis.[101] The EU average for 2007 was about 13.8 tonnes CO2e per person. For the USA, Luxembourg and Australia it was over 25 tonnes CO2e per person. In 2017, the average for the USA was about 20 metric tonnes CO2e per person. This is one of the highest per capita figures in the world.[102] The footprints per capita of countries in Africa and India were well below average. Per capita emissions in India are low for its huge population. But overall the country is the third largest emitter of CO2 and fifth largest economy by nominal GDP in the world.[103] Assuming a global population of around 9–10 billion by 2050, a carbon footprint of about 2–2.5 tonnes CO2e per capita is needed to stay within a 2 °C target. These carbon footprint calculations are based on a consumption-based approach using a Multi-Regional Input-Output (MRIO) database. This database accounts for all greenhouse gas (GHG) emissions in the global supply chain and allocates them to the final consumer of the purchased commodities.[104]

Reducing the carbon footprint

File:Go vegan and cut your climate footprint by 50%. (23310836832).jpg
Sign at demonstration: "Go vegan and cut your climate footprint by 50%"

Climate change mitigation

Efforts to reduce the carbon footprint of products, services and organizations help limit climate change. Such activities are called climate change mitigation.

Climate change mitigation (or decarbonisation) is action to limit the greenhouse gases in the atmosphere that cause climate change. Climate change mitigation actions include conserving energy and replacing fossil fuels with clean energy sources. Secondary mitigation strategies include changes to land use and removing carbon dioxide (CO2) from the atmosphere.[105][106] Current climate change mitigation policies are insufficient as they would still result in global warming of about 2.7 °C by 2100,[107] significantly above the 2015 Paris Agreement's[108] goal of limiting global warming to below 2 °C.[109][110] Solar energy and wind power can replace fossil fuels at the lowest cost compared to other renewable energy options.[111] The availability of sunshine and wind is variable and can require electrical grid upgrades, such as using long-distance electricity transmission to group a range of power sources.[112] Energy storage can also be used to even out power output, and demand management can limit power use when power generation is low. Cleanly generated electricity can usually replace fossil fuels for powering transportation, heating buildings, and running industrial processes.[citation needed] Certain processes are more difficult to decarbonise, such as air travel and cement production. Carbon capture and storage (CCS) can be an option to reduce net emissions in these circumstances, although fossil fuel power plants with CCS technology is currently a high cost climate change mitigation strategy.[113] Human land use changes such as agriculture and deforestation cause about 1/4th of climate change. These changes impact how much CO2 is absorbed by plant matter and how much organic matter decays or burns to release CO2. These changes are part of the fast carbon cycle, whereas fossil fuels release CO2 that was buried underground as part of the slow carbon cycle. Methane is a short lived greenhouse gas that is produced by decaying organic matter and livestock, as well as fossil fuel extraction. Land use changes can also impact precipitation patterns and the reflectivity of the surface of the Earth. It is possible to cut emissions from agriculture by reducing food waste, switching to a more plant-based diet (also referred to as low-carbon diet), and by improving farming processes.[114]

Various policies can encourage climate change mitigation. Carbon pricing systems have been set up that either tax CO2 emissions or cap total emissions and trade emission credits. Fossil fuel subsidies can be eliminated in favor of clean energy subsidies, and incentives offered for installing energy efficiency measures or switching to electric power sources.[115] Another issue is overcoming environmental objections when constructing new clean energy sources and making grid modifications.

Reducing industry's carbon footprint

File:Windmill field.jpg
Wind farms provide energy with a fairly low carbon footprint compared to fossil fuels.

Carbon offsetting can reduce a company's overall carbon footprint by providing it with a carbon credit.[116] This compensates the company for carbon dioxide emissions by recognizing an equivalent reduction of carbon dioxide in the atmosphere. Reforestation, or restocking existing forests that have previously been depleted, is an example of carbon offsetting. A carbon footprint study can identify specific and critical areas for improvement. It uses input-output analysis and scrutinizes the entire supply chain.[57] Such an analysis could be used to eliminate the supply chains with the highest greenhouse gas emissions.

History

The term carbon footprint was first used in a BBC vegetarian food magazine in 1999, [117] though the broader concept of ecological footprint, which encompasses the carbon footprint, had been used since at least 1992,[118] as also chronicled by William Safire in the New York Times.[119] In 2005, fossil fuel company BP hired the large advertising campaign Ogilvy to popularize the idea of a carbon footprint for individuals. The campaign instructed people to calculate their personal footprints and provided ways for people to "go on a low-carbon diet".[120][121][122] The carbon footprint is derived from the ecological footprint, which encompasses carbon emissions.[12] The carbon footprint follows the logic of ecological footprint accounting, which tracks the resource use embodied in consumption, whether it is a product, an individual, a city, or a country.[12] While in the ecological footprint, carbon emissions are translated into areas needed to absorb the carbon emissions,[123] the carbon footprint on its own is expressed in the weight of carbon emissions per time unit. William Rees wrote the first academic publication about ecological footprints in 1992.[124] Other related concepts from the 1990s are the "ecological backpack" and material input per unit of service (MIPS).[125]

Trends and similar concepts

The International Sustainability Standards Board (ISSB) aims to bring global, rigorous oversight to carbon footprint reporting. It was formed out of the International Financial Reporting Standards. It will require companies to report on their Scope 3 emissions.[126] The ISSB has taken on board criticisms of other initiatives in its aims for universality.[127] It consolidates the Carbon Disclosure Standards Board, the Sustainability Accounting Standards Board and the Value Reporting Foundation. It complements the Global Reporting Initiative. It is influenced by the Task Force on Climate-Related Financial Disclosures. As of early 2023, Great Britain and Nigeria were preparing to adopt these standards.[128] The concept of total equivalent warming impact (TEWI) is the most used index for carbon dioxide equivalent (CO2) emissions calculation in air conditioning and refrigeration sectors by including both the direct and indirect contributions since it evaluates the emissions caused by the operating lifetime of systems.[129] The Expanded Total Equivalent Warming Impact method has been used for an accurate evaluation of refrigerators emissions.[129]

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Ritchie, Hannah; Roser, Max (18 March 2024). "You want to reduce the carbon footprint of your food? Focus on what you eat, not whether your food is local". Our World in Data.
  2. "What is a carbon footprint". www.conservation.org. Retrieved 28 May 2023.
  3. 3.0 3.1 IPCC, 2022: Annex I: Glossary Archived 13 March 2023 at the Wayback Machine [van Diemen, R., J.B.R. Matthews, V. Möller, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, A. Reisinger, S. Semenov (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 August 2022 at the Wayback Machine [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi:10.1017/9781009157926.020
  4. 4.0 4.1 Green Element Ltd., What is the Difference Between Scope 1, 2 and 3 Emissions? Archived 11 November 2020 at the Wayback Machine, published 2 November 2018, accessed 11 November 2020
  5. 5.0 5.1 5.2 Ritchie, Hannah; Roser, Max (18 March 2024). "How do CO2 emissions compare when we adjust for trade?". Our World in Data.
  6. 6.0 6.1 6.2 Eggleston, H. S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (1 July 2006). "2006 IPCC Guidelines for National Greenhouse Gas Inventories". IPCC National Greenhouse Gas Inventories Programme.
  7. 7.0 7.1 "Emissions from fuels used for international aviation and maritime transport". UNFCCC. Retrieved 11 June 2023.
  8. 8.0 8.1 Tukker, Arnold; Pollitt, Hector; Henkemans, Maurits (22 April 2020). "Consumption-based carbon accounting: sense and sensibility". Climate Policy. 20 (sup1): S1–S13. Bibcode:2020CliPo..20S...1T. doi:10.1080/14693062.2020.1728208. hdl:1887/3135062. ISSN 1469-3062. S2CID 214525354.
  9. Wright, L.; Kemp, S.; Williams, I. (2011). "'Carbon footprinting': towards a universally accepted definition". Carbon Management. 2 (1): 61–72. Bibcode:2011CarM....2...61W. doi:10.4155/CMT.10.39. S2CID 154004878.
  10. Wright, Laurence A; Kemp, Simon; Williams, Ian (2011). "'Carbon footprinting': towards a universally accepted definition". Carbon Management. 2 (1): 61–72. Bibcode:2011CarM....2...61W. doi:10.4155/cmt.10.39. ISSN 1758-3004. S2CID 154004878.
  11. "Corporate Standard Greenhouse Gas Protocol". Archived from the original on 29 July 2022. Retrieved 29 July 2022.
  12. 12.0 12.1 12.2 12.3 12.4 Wiedmann, T.; Minx, J. (2008). "A Definition of 'Carbon Footprint'". In Pertsova, C. C. (ed.). Ecological Economics Research Trends. Hauppauge: Nova Science Publishers. pp. 1–11.
  13. Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO₂ and Greenhouse Gas Emissions". Our World in Data.
  14. "How New Zealand is reducing methane emissions from farming". www.bbc.com. Retrieved 10 February 2024.
  15. "Greenhouse Gas Protocol". World Resources Institute. 2 May 2023. Retrieved 19 July 2023.
  16. 16.0 16.1 "Corporate Value Chain (Scope 3) Accounting and Reporting Standard". Greenhouse Gas Protocol. Archived from the original on 31 January 2021. Retrieved 28 February 2016.
  17. "Greenhouse Gas Protocol". Archived from the original on 22 December 2020. Retrieved 25 February 2019.
  18. "Streamlined Energy And Carbon Reporting Guidance UK". LongevityIntelligen. Retrieved 16 July 2020.
  19. 19.0 19.1 "Product Life Cycle Accounting and Reporting Standard" (PDF). GHG Protocol. Archived from the original on 25 February 2019.
  20. 20.0 20.1 Bellassen, Valentin (2015). Accounting for Carbon Monitoring, Reporting and Verifying Emissions in the Climate Economy. Cambridge University Press. p. 6. ISBN 9781316162262.
  21. "Scope 2 Calculation Guidance" (PDF). GHG Protocol. Archived (PDF) from the original on 21 October 2020. Retrieved 25 February 2019.
  22. EPA, OA, US (23 December 2015). "Overview of Greenhouse Gases | US EPA". US EPA. Archived from the original on 12 August 2016. Retrieved 1 November 2017.
  23. "Corporate Value Chain (Scope 3) Standard | Greenhouse Gas Protocol". ghgprotocol.org. Archived from the original on 9 December 2021. Retrieved 9 December 2021.
  24. Bokern, D. (9 March 2022). "Reported Emission Footprints: The Challenge is Real". MSCI. Retrieved 22 January 2023.
  25. Molé, P. (1 November 2022). "ISSB Votes to Include Scope 3 Greenhouse Gas (GHG) Emission Disclosures in Updates to Draft Standards". VelocityEHS. Retrieved 22 January 2023.
  26. "Are consumption-based CO₂ per capita emissions above or below the global average?". Our World in Data. Retrieved 7 July 2023.
  27. Lynas, Mark; Houlton, Benjamin Z.; Perry, Simon (19 October 2021). "Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature". Environmental Research Letters. 16 (11): 114005. Bibcode:2021ERL....16k4005L. doi:10.1088/1748-9326/ac2966. S2CID 239032360.
  28. Allen, M.R., O.P. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, R. Perez, M.Wairiu, and K. Zickfeld, 2018: Chapter 1: Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 49-92. doi:10.1017/9781009157940.003.
  29. Ritchie, Hannah (18 September 2020). "Sector by sector: where do global greenhouse gas emissions come from?". Our World in Data. Retrieved 28 October 2020.
  30. European Commission. Joint Research Centre. (2022). CO2 emissions of all world countries :JRC/IEA/PBL 2022 report. LU: Publications Office. doi:10.2760/730164. ISBN 9789276558026.
  31. "The Paris Agreement". UNFCCC. Archived from the original on 19 March 2021. Retrieved 18 September 2021.
  32. Schleussner, Carl-Friedrich (13 May 2022). "The Paris Agreement – the 1.5 °C Temperature Goal". Climate Analytics. Retrieved 29 January 2022.
  33. Read, Simon; Shine, Ian (20 September 2022). "What is the difference between Scope 1, 2 and 3 emissions, and what are companies doing to cut all three?". World Economic Forum. Retrieved 28 May 2023.
  34. Lenzen, Manfred; Murray, Joy (20 February 2009). "Input into Greenhouse Gas Protocol Technical Working Group discussion on sectoral value chain mapping of emissions by purchased categories" (PDF). The University of Sydney Centre for Integrated Sustainability Analysis. Retrieved 28 May 2023.
  35. Lenzen, M; Treloar, G (1 February 2002). "Embodied energy in buildings: wood versus concrete—reply to Börjesson and Gustavsson". Energy Policy. 30 (3): 249–255. Bibcode:2002EnPol..30..249L. doi:10.1016/S0301-4215(01)00142-2. ISSN 0301-4215.
  36. 36.0 36.1 Reiner, Vivienne; Malik, Arunima; Lenzen, Manfred (24 February 2022). "Google and Amazon misled about their carbon footprint. But what about the rest of us?". The Canberra Times. Retrieved 28 May 2023.
  37. 37.0 37.1 Wiedmann, Thomas; Lenzen, Manfred (2018). "Environmental and social footprints of international trade". Nature Geoscience. 11 (5): 314–321. Bibcode:2018NatGe..11..314W. doi:10.1038/s41561-018-0113-9. hdl:1959.4/unsworks_50533. ISSN 1752-0894. S2CID 134496973.
  38. Reiner, Vivienne; Malik, Arunima (13 October 2021). "Carbon 'footprinting' could accurately measure countries' emissions". news.com.au. Retrieved 7 July 2023.
  39. Harrabin, Roger (31 July 2008). "UK in 'delusion' over emissions". BBC News. Retrieved 19 June 2023.
  40. Wiedmann, T.; Wood, R.; Lenzen, M.; Minx, J.; Guan, D.; J., Barrett (2007). Development of an Embedded Carbon Emissions Indicator – Producing a Time Series of Input-Output Tables and Embedded Carbon Dioxide Emissions for the UK by Using a MRIO Data Optimisation System, Report to the UK Department for Environment, Food and Rural Affairs (PDF) (Report). London: Stockholm Environment Institute at the University of York and Centre for Integrated Sustainability Analysis at the University of Sydney.
  41. 41.0 41.1 Kanemoto, K.; Moran, D.; Lenzen, M.; Geschke, A. (2014). "International trade undermines national emission reduction targets: New evidence from air pollution". Global Environmental Change. 24: 52–59. Bibcode:2014GEC....24...52K. doi:10.1016/j.gloenvcha.2013.09.008. ISSN 0959-3780.
  42. Lenzen, Manfred; Moran, Daniel; Bhaduri, Anik; Kanemoto, Keiichiro; Bekchanov, Maksud; Geschke, Arne; Foran, Barney (1 October 2013). "International trade of scarce water". Ecological Economics. 94: 78–85. Bibcode:2013EcoEc..94...78L. doi:10.1016/j.ecolecon.2013.06.018. ISSN 0921-8009.
  43. Lenzen, M.; Moran, D.; Kanemoto, K.; Foran, B.; Lobefaro, L.; Geschke, A. (June 2012). "International trade drives biodiversity threats in developing nations". Nature. 486 (7401): 109–112. Bibcode:2012Natur.486..109L. doi:10.1038/nature11145. ISSN 1476-4687. PMID 22678290. S2CID 1119021.
  44. Wiedmann, Thomas O.; Schandl, Heinz; Lenzen, Manfred; Moran, Daniel; Suh, Sangwon; West, James; Kanemoto, Keiichiro (19 May 2015). "The material footprint of nations". Proceedings of the National Academy of Sciences. 112 (20): 6271–6276. Bibcode:2015PNAS..112.6271W. doi:10.1073/pnas.1220362110. ISSN 0027-8424. PMC 4443380. PMID 24003158.
  45. Lan, Jun; Malik, Arunima; Lenzen, Manfred; McBain, Darian; Kanemoto, Keiichiro (1 February 2016). "A structural decomposition analysis of global energy footprints". Applied Energy. 163: 436–451. Bibcode:2016ApEn..163..436L. doi:10.1016/j.apenergy.2015.10.178. ISSN 0306-2619.
  46. Lenzen, Manfred; Murray, Joy; Sack, Fabian; Wiedmann, Thomas (2007). "Shared producer and consumer responsibility — Theory and practice". Ecological Economics. 61 (1): 27–42. doi:10.1016/j.ecolecon.2006.05.018.
  47. Wiedmann, Thomas; Chen, Guangwu; Owen, Anne; Lenzen, Manfred; Doust, Michael; Barrett, John; Steele, Kristian (2021). "Three-scope carbon emission inventories of global cities". Journal of Industrial Ecology. 25 (3): 735–750. Bibcode:2021JInEc..25..735W. doi:10.1111/jiec.13063. hdl:1959.4/unsworks_73064. ISSN 1088-1980. S2CID 224842866.
  48. Department for Business, Energy & Industrial Strategy (25 June 2020). "UK local authority carbon dioxide emissions estimates 2018" (PDF). GOV.UK. Archived (PDF) from the original on 26 January 2021. Retrieved 13 April 2021.
  49. "My Carbon Plan - Carbon Footprint Calculator, which provides a calculator using ONS data in the UK". mycarbonplan.org. Archived from the original on 27 July 2020. Retrieved 4 April 2020.
  50. "CO2List.org which shows CO2 coming from common products and activities". co2list.org. Archived from the original on 3 October 2019. Retrieved 4 October 2019.
  51. "Scope 3 Evaluator | GHG Protocol". ghgprotocol.org. Retrieved 11 June 2023.
  52. Hack, Stefan; Berg, Christian (2 July 2014). "The Potential of IT for Corporate Sustainability". Sustainability. 6 (7): 4163–4180. doi:10.3390/su6074163. ISSN 2071-1050.
  53. 53.0 53.1 "Pain-free scope 3. Input into Greenhouse Gas Protocol Technical Working Group discussion on sectoral value chain mapping of emissions by purchased categories" (PDF). Retrieved 11 June 2023.
  54. "Consumption-based vs. production-based CO₂ emissions per capita". Our World in Data. Retrieved 7 July 2023.
  55. 55.0 55.1 Dietzenbacher, Erik; Cazcarro, Ignacio; Arto, Iñaki (2020). "Towards a more effective climate policy on international trade". Nature Communications. 11 (1): 1130. Bibcode:2020NatCo..11.1130D. doi:10.1038/s41467-020-14837-5. ISSN 2041-1723. PMC 7048780. PMID 32111849. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  56. Malik, Arunima; McBain, Darian; Wiedmann, Thomas O.; Lenzen, Manfred; Murray, Joy (2019). "Advancements in Input-Output Models and Indicators for Consumption-Based Accounting". Journal of Industrial Ecology. 23 (2): 300–312. Bibcode:2019JInEc..23..300M. doi:10.1111/jiec.12771. hdl:1959.4/unsworks_57565. ISSN 1088-1980. S2CID 158533390.
  57. 57.0 57.1 57.2 Handbook of input-output table compilation and analysis. UN Statistics Division. 1999.
  58. "World Trade Organization - Global Value Chains". www.wto.org. Retrieved 5 June 2023.
  59. Dietzenbacher, Erik; Lahr, Michael L.; Lenzen, Manfred, eds. (31 July 2020). "Recent Developments in Input–Output Analysis". Elgar Research Reviews in Economics. doi:10.4337/9781786430816. ISBN 9781786430809. S2CID 225409688.
  60. "Environmental management -- Life cycle assessment -- Principles and framework". International Organization for Standardization. 12 August 2014. Archived from the original on 26 February 2019. Retrieved 25 February 2019.
  61. DIN EN ISO 14067:2019-02, Treibhausgase_- Carbon Footprint von Produkten_- Anforderungen an und Leitlinien für Quantifizierung (ISO_14067:2018); Deutsche und Englische Fassung EN_ISO_14067:2018, Beuth Verlag GmbH, doi:10.31030/2851769
  62. "PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services". BSI. Retrieved on: 25 April 2013.
  63. "Product Life Cycle Accounting and Reporting Standard" Archived 9 May 2013 at the Wayback Machine. GHG Protocol. Retrieved on: 25 April 2013.
  64. Lenzen, Manfred (2000). "Errors in Conventional and Input-Output—based Life—Cycle Inventories". Journal of Industrial Ecology. 4 (4): 127–148. Bibcode:2000JInEc...4..127L. doi:10.1162/10881980052541981. ISSN 1088-1980. S2CID 154022052.
  65. 65.0 65.1 65.2 Kaufman, Mark (13 July 2020). "The devious fossil fuel propaganda we all use". Mashable. Archived from the original on 17 September 2020. Retrieved 17 September 2020.
  66. Turner, James Morton (1 February 2014). "Counting Carbon: The Politics of Carbon Footprints and Climate Governance from the Individual to the Global". Global Environmental Politics. 14 (1): 59–78. doi:10.1162/GLEP_a_00214. ISSN 1526-3800. S2CID 15886043.
  67. Westervelt, Amy (14 May 2021). "Big Oil Is Trying to Make Climate Change Your Problem to Solve. Don't Let Them". Rolling Stone. Archived from the original on 21 June 2021. Retrieved 13 June 2021.
  68. Leber, Rebecca (13 May 2021). "ExxonMobil wants you to feel responsible for climate change so it doesn't have to". Vox. Archived from the original on 25 March 2023. Retrieved 25 March 2023.
  69. Supran, Geoffrey; Oreskes, Naomi (May 2021). "Rhetoric and frame analysis of ExxonMobil's climate change communications". One Earth. 4 (5): 696–719. Bibcode:2021OEart...4..696S. doi:10.1016/j.oneear.2021.04.014. ISSN 2590-3322. S2CID 236343941.
  70. 70.0 70.1 70.2 Berg, Christian (2020). Sustainable action: overcoming the barriers. Abingdon, Oxon. ISBN 978-0-429-57873-1. OCLC 1124780147.{{cite book}}: CS1 maint: location missing publisher (link)
  71. Fang, K.; Heijungs, R.; De Snoo, G.R. (January 2014). "Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family". Ecological Indicators. 36: 508–518. Bibcode:2014EcInd..36..508F. doi:10.1016/j.ecolind.2013.08.017.
  72. Wiedmann, Thomas; Barrett, John (2010). "A Review of the Ecological Footprint Indicator—Perceptions and Methods". Sustainability. 2 (6): 1645–1693. doi:10.3390/su2061645. ISSN 2071-1050.
  73. "SCP Hotspots Analysis". Retrieved 5 June 2023.
  74. 74.0 74.1 Piñero, P., Sevenster, M., Lutter, S., Giljum, S. (2021). Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCPHAT) version 2.0. Commissioned by UN Life Cycle Initiative, One Planet Network, and UN International Resource Panel. Paris.
  75. "UN Comtrade". Retrieved 19 June 2023.
  76. ● Source for carbon emissions data: "Territorial (MtCO₂) / Emissions / Carbon emissions / Chart View". Global Carbon Atlas. 2024.
    ● Source for country population data: "Population 2022" (PDF). World Bank. 2024. Archived (PDF) from the original on 22 October 2024. (2022 data)
  77. "Chapter 2: Emissions trends and drivers" (PDF). Ipcc_Ar6_Wgiii. 2022. Archived from the original (PDF) on 12 April 2022. Retrieved 4 April 2022.
  78. Ritchie, Hannah; Rosado, Pablo; Roser, Max (28 December 2023). "CO₂ and Greenhouse Gas Emissions". Our World in Data.
  79. "Global Carbon Project (GCP)". www.globalcarbonproject.org. Archived from the original on 4 April 2019. Retrieved 19 May 2019.
  80. "Methane vs. Carbon Dioxide: A Greenhouse Gas Showdown". One Green Planet. 30 September 2014. Retrieved 13 February 2020.
  81. Milman, Oliver (6 April 2024). "Scientists confirm record highs for three most important heat-trapping gases". The Guardian. ISSN 0261-3077. Retrieved 8 April 2024.
  82. Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data.
  83. widworld_admin (20 October 2021). "The World #InequalityReport 2022 presents the most up-to-date & complete data on inequality worldwide". World Inequality Report 2022 (in français). Retrieved 14 July 2023.
  84. "Carbon inequality in 2030: Per capita consumption emissions and the 1.5C goal – IEEP AISBL". Retrieved 14 July 2023.
  85. Gore, Tim (5 November 2021). Carbon Inequality in 2030: Per capita consumption emissions and the 1.5 °C goal. Institute for European Environmental Policy. doi:10.21201/2021.8274. hdl:10546/621305. ISBN 9781787488274. S2CID 242037589.
  86. "AR6 Climate Change 2022: Mitigation of Climate Change — IPCC". Retrieved 14 July 2023.
  87. Grubb, M. (July–September 2003). "The economics of the Kyoto protocol" (PDF). World Economics. 4 (3). Archived from the original (PDF) on 17 July 2011.
  88. "What is a carbon footprint". www.conservation.org. Retrieved 28 May 2023.
  89. IPCC, 2022: Annex I: Glossary Archived 13 March 2023 at the Wayback Machine [van Diemen, R., J.B.R. Matthews, V. Möller, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, A. Reisinger, S. Semenov (eds)]. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 August 2022 at the Wayback Machine [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.020
  90. "Carbon Accounting". Corporate Finance Institute. Retrieved 6 January 2023.
  91. "Footprint measurement". The Carbon Trust. Archived from the original on 23 December 2014. Retrieved 14 August 2012.
  92. "IPCC 6th Assessment Report. WG III. Mitigation of Climate Change. Chapter 2 Emissions Trends and Drivers pp. 215-294" (PDF). 2022. p. 218. Retrieved 11 June 2023.
  93. Wiedmann, Thomas; Lenzen, Manfred; Keyßer, Lorenz T.; Steinberger, Julia K. (19 June 2020). "Scientists' warning on affluence". Nature Communications. 11 (1): 3107. Bibcode:2020NatCo..11.3107W. doi:10.1038/s41467-020-16941-y. ISSN 2041-1723. PMC 7305220. PMID 32561753.
  94. "IPCC 6th Assessment Report. WG III. Full Report. 2029p" (PDF). p. 1163. Retrieved 11 June 2023.
  95. 95.0 95.1 95.2 "Which form of transport has the smallest carbon footprint?". Our World in Data. Retrieved 7 July 2023.}} File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  96. "Carbon Accounting". Corporate Finance Institute. Retrieved 6 January 2023.
  97. Downar, Benedikt; Ernstberger, Jürgen; Reichelstein, Stefan; Schwenen, Sebastian; Zaklan, Aleksandar (1 September 2021). "The impact of carbon disclosure mandates on emissions and financial operating performance". Review of Accounting Studies. 26 (3): 1137–1175. doi:10.1007/s11142-021-09611-x. hdl:10419/266352. ISSN 1573-7136. S2CID 220061770.
  98. "Briefing: What are Scope 3 emissions?". 25 February 2019. Retrieved 19 December 2023.
  99. Greenhouse Gas Protocol Corporate Accounting 2004, p. 25
  100. Kim, J. "Al Gore helped launch a global emissions tracker that keeps big polluters honest". NPR.org. Retrieved 5 January 2023.
  101. "CO2 emissions (metric tons per capita)". The World Bank. Archived from the original on 6 March 2019. Retrieved 4 March 2019.
  102. "What is your carbon footprint?". The Nature Conservancy. Archived from the original on 10 September 2021. Retrieved 25 September 2021.
  103. Nandy, S.N. (2023). Differential Carbon Footprint in India – An Economic Perspective. Journal of Sustainability and Environmental Management, 2(1), 74–82. https://doi.org/10.3126/josem.v2i1.53119
  104. Tukker, Arnold; Bulavskaya, Tanya; Giljum, Stefan; de Koning, Arjan; Lutter, Stephan; Simas, Moana; Stadler, Konstantin; Wood, Richard (2016). "Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments". Global Environmental Change. 40: 171–181. Bibcode:2016GEC....40..171T. doi:10.1016/j.gloenvcha.2016.07.002.
  105. Fawzy, Samer; Osman, Ahmed I.; Doran, John; Rooney, David W. (2020). "Strategies for mitigation of climate change: a review". Environmental Chemistry Letters. 18 (6): 2069–2094. Bibcode:2020EnvCL..18.2069F. doi:10.1007/s10311-020-01059-w.
  106. Abbass, Kashif; Qasim, Muhammad Zeeshan; Song, Huaming; Murshed, Muntasir; Mahmood, Haider; Younis, Ijaz (2022). "A review of the global climate change impacts, adaptation, and sustainable mitigation measures". Environmental Science and Pollution Research. 29: 42539–42559. doi:10.1007/s11356-022-19718-6.
  107. Ritchie, Hannah; Roser, Max; Rosado, Pablo (11 May 2020). "CO2 and Greenhouse Gas Emissions". Our World in Data. Retrieved 27 August 2022.
  108. Rogelj, J.; Shindell, D.; Jiang, K.; Fifta, S.; et al. (2018). "Chapter 2: Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development" (PDF). Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (PDF).
  109. Harvey, Fiona (26 November 2019). "UN calls for push to cut greenhouse gas levels to avoid climate chaos". The Guardian. Retrieved 27 November 2019.
  110. "Cut Global Emissions by 7.6 Percent Every Year for Next Decade to Meet 1.5°C Paris Target – UN Report". United Nations Framework Convention on Climate Change. United Nations. Retrieved 27 November 2019.
  111. IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, United States
  112. Ram M., Bogdanov D., Aghahosseini A., Gulagi A., Oyewo A.S., Child M., Caldera U., Sadovskaia K., Farfan J., Barbosa LSNS., Fasihi M., Khalili S., Dalheimer B., Gruber G., Traber T., De Caluwe F., Fell H.-J., Breyer C. Global Energy System based on 100% Renewable Energy – Power, Heat, Transport and Desalination Sectors Archived 2021-04-01 at the Wayback Machine. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin, March 2019.
  113. "Cement – Analysis". IEA. Retrieved 24 November 2022.
  114. United Nations Environment Programme (2022). Emissions Gap Report 2022: The Closing Window — Climate crisis calls for rapid transformation of societies. Nairobi.
  115. "Climate Change Performance Index" (PDF). November 2022. Retrieved 16 November 2022.
  116. Corbett, James (2008). "Carbon Footprint". In Brenda Wilmoth Lerner; K. Lee Lerner (eds.). Climate Change: In Context, vol. 1. Gale. pp. 162–164. ISBN 978-1-4144-3708-8.
  117. "carbon, n." OED Online. Oxford University Press. Archived from the original on 24 March 2023. Retrieved 24 March 2023.
  118. "ecological footprint, noun". OED Online. Oxford University Press. Retrieved 8 October 2024.
  119. Safire, William (17 February 2008). "On language: footprint". The New York Times. Archived from the original on 14 March 2020. Retrieved 8 October 2024.
  120. "BP Global - Environment and society - Carbon reduction". 12 February 2006. Archived from the original on 12 February 2006. Retrieved 13 June 2021.
  121. Supran, Geoffrey; Oreskes, Naomi (18 November 2021). "The forgotten oil ads that told us climate change was nothing". The Guardian. Archived from the original on 18 November 2021. Retrieved 24 March 2023.
  122. "Climatarian: the "zero emissions" meal". BCFN Foundation. 24 June 2016. Archived from the original on 6 February 2020. Retrieved 6 February 2020.
  123. Wackernagel, Mathis; Hanscom, Laurel; Jayasinghe, Priyangi; Lin, David; Murthy, Adeline; Neill, Evan; Raven, Peter (26 April 2021). "The importance of resource security for poverty eradication". Nature Sustainability. 4 (8): 731–738. doi:10.1038/s41893-021-00708-4.
  124. Rees, William E. (October 1992). "Ecological footprints and appropriated carrying capacity: what urban economics leaves out". Environment & Urbanization. 4 (2): 121–130. Bibcode:1992EnUrb...4..121R. doi:10.1177/095624789200400212.
  125. Ritthoff, M; Rohn, H; Liedtke, C (2003). Calculating MIPS – Resource productivity of products and services. Wuppertal Institute. Accessed 22 February 2012
  126. "IFRS - ISSB unanimously confirms Scope 3 GHG emissions disclosure requirements with strong application support, among key decisions". www.ifrs.org. Retrieved 11 June 2023.
  127. "Making sense of ISSB | Deloitte Australia | About Deloitte". Deloitte Australia. Retrieved 11 June 2023.
  128. Jones, Huw (16 February 2023). "G20-backed standards body approves first global company sustainability rules". Reuters. Retrieved 11 June 2023.
  129. 129.0 129.1 Aprea, Ciro; Ceglia, Francesca; Llopis, Rodrigo; Maiorino, Angelo; Marrasso, Elisa; Petruzziello, Fabio; Sasso, Maurizio (2022). "Expanded Total Equivalent Warming Impact analysis on experimental standalone fresh-food refrigerator". Energy Conversion and Management: X. 15: 100262. Bibcode:2022ECMX...1500262A. doi:10.1016/j.ecmx.2022.100262. hdl:10234/200662.

External links