Closure (topology)

From The Right Wiki
(Redirected from Closure of a set)
Jump to navigationJump to search

In topology, the closure of a subset S of points in a topological space consists of all points in S together with all limit points of S. The closure of S may equivalently be defined as the union of S and its boundary, and also as the intersection of all closed sets containing S. Intuitively, the closure can be thought of as all the points that are either in S or "very near" S. A point which is in the closure of S is a point of closure of S. The notion of closure is in many ways dual to the notion of interior.

Definitions

Point of closure

For S as a subset of a Euclidean space, x is a point of closure of S if every open ball centered at x contains a point of S (this point can be x itself). This definition generalizes to any subset S of a metric space X. Fully expressed, for X as a metric space with metric d, x is a point of closure of S if for every r>0 there exists some sS such that the distance d(x,s)<r (x=s is allowed). Another way to express this is to say that x is a point of closure of S if the distance d(x,S):=infsSd(x,s)=0 where inf is the infimum. This definition generalizes to topological spaces by replacing "open ball" or "ball" with "neighbourhood". Let S be a subset of a topological space X. Then x is a point of closure or adherent point of S if every neighbourhood of x contains a point of S (again, x=s for sS is allowed).[1] Note that this definition does not depend upon whether neighbourhoods are required to be open.

Limit point

The definition of a point of closure of a set is closely related to the definition of a limit point of a set. The difference between the two definitions is subtle but important – namely, in the definition of a limit point x of a set S, every neighbourhood of x must contain a point of S other than x itself, i.e., each neighbourhood of x obviously has x but it also must have a point of S that is not equal to x in order for x to be a limit point of S. A limit point of S has more strict condition than a point of closure of S in the definitions. The set of all limit points of a set S is called the derived set of S. A limit point of a set is also called cluster point or accumulation point of the set. Thus, every limit point is a point of closure, but not every point of closure is a limit point. A point of closure which is not a limit point is an isolated point. In other words, a point x is an isolated point of S if it is an element of S and there is a neighbourhood of x which contains no other points of S than x itself.[2] For a given set S and point x, x is a point of closure of S if and only if x is an element of S or x is a limit point of S (or both).

Closure of a set

The closure of a subset S of a topological space (X,τ), denoted by cl(X,τ)S or possibly by clXS (if τ is understood), where if both X and τ are clear from context then it may also be denoted by clS, S, or S (Moreover, cl is sometimes capitalized to Cl.) can be defined using any of the following equivalent definitions:

  1. clS is the set of all points of closure of S.
  2. clS is the set S together with all of its limit points. (Each point of S is a point of closure of S, and each limit point of S is also a point of closure of S.)[3]
  3. clS is the intersection of all closed sets containing S.
  4. clS is the smallest closed set containing S.
  5. clS is the union of S and its boundary (S).
  6. clS is the set of all xX for which there exists a net (valued) in S that converges to x in (X,τ).

The closure of a set has the following properties.[4]

  • clS is a closed superset of S.
  • The set S is closed if and only if S=clS.
  • If ST then clS is a subset of clT.
  • If A is a closed set, then A contains S if and only if A contains clS.

Sometimes the second or third property above is taken as the definition of the topological closure, which still make sense when applied to other types of closures (see below).[5] In a first-countable space (such as a metric space), clS is the set of all limits of all convergent sequences of points in S. For a general topological space, this statement remains true if one replaces "sequence" by "net" or "filter" (as described in the article on filters in topology). Note that these properties are also satisfied if "closure", "superset", "intersection", "contains/containing", "smallest" and "closed" are replaced by "interior", "subset", "union", "contained in", "largest", and "open". For more on this matter, see closure operator below.

Examples

Consider a sphere in a 3 dimensional space. Implicitly there are two regions of interest created by this sphere; the sphere itself and its interior (which is called an open 3-ball). It is useful to distinguish between the interior and the surface of the sphere, so we distinguish between the open 3-ball (the interior of the sphere), and the closed 3-ball – the closure of the open 3-ball that is the open 3-ball plus the surface (the surface as the sphere itself). In topological space:

  • In any space, =cl. In other words, the closure of the empty set is itself.
  • In any space X, X=clX.

Giving and the standard (metric) topology:

  • If X is the Euclidean space of real numbers, then clX((0,1))=[0,1]. In other words., the closure of the set (0,1) as a subset of X is [0,1].
  • If X is the Euclidean space , then the closure of the set of rational numbers is the whole space . We say that is dense in .
  • If X is the complex plane =2, then clX({z:|z|>1})={z:|z|1}.
  • If S is a finite subset of a Euclidean space X, then clXS=S. (For a general topological space, this property is equivalent to the T1 axiom.)

On the set of real numbers one can put other topologies rather than the standard one.

  • If X= is endowed with the lower limit topology, then clX((0,1))=[0,1).
  • If one considers on X= the discrete topology in which every set is closed (open), then clX((0,1))=(0,1).
  • If one considers on X= the trivial topology in which the only closed (open) sets are the empty set and itself, then clX((0,1))=.

These examples show that the closure of a set depends upon the topology of the underlying space. The last two examples are special cases of the following.

  • In any discrete space, since every set is closed (and also open), every set is equal to its closure.
  • In any indiscrete space X, since the only closed sets are the empty set and X itself, we have that the closure of the empty set is the empty set, and for every non-empty subset A of X, clXA=X. In other words, every non-empty subset of an indiscrete space is dense.

The closure of a set also depends upon in which space we are taking the closure. For example, if X is the set of rational numbers, with the usual relative topology induced by the Euclidean space , and if S={q:q2>2,q>0}, then S is both closed and open in because neither S nor its complement can contain 2, which would be the lower bound of S, but cannot be in S because 2 is irrational. So, S has no well defined closure due to boundary elements not being in . However, if we instead define X to be the set of real numbers and define the interval in the same way then the closure of that interval is well defined and would be the set of all real numbers greater than or equal to 2.

Closure operator

A closure operator on a set X is a mapping of the power set of X, 𝒫(X), into itself which satisfies the Kuratowski closure axioms. Given a topological space (X,τ), the topological closure induces a function clX:(X)(X) that is defined by sending a subset SX to clXS, where the notation S or S may be used instead. Conversely, if 𝕔 is a closure operator on a set X, then a topological space is obtained by defining the closed sets as being exactly those subsets SX that satisfy 𝕔(S)=S (so complements in X of these subsets form the open sets of the topology).[6] The closure operator clX is dual to the interior operator, which is denoted by intX, in the sense that

clXS=XintX(XS),

and also

intXS=XclX(XS).

Therefore, the abstract theory of closure operators and the Kuratowski closure axioms can be readily translated into the language of interior operators by replacing sets with their complements in X. In general, the closure operator does not commute with intersections. However, in a complete metric space the following result does hold:

Theorem[7] (C. Ursescu) — Let S1,S2, be a sequence of subsets of a complete metric space X.

  • If each Si is closed in X then clX(iintXSi)=clX[intX(iSi)].
  • If each Si is open in X then intX(iclXSi)=intX[clX(iSi)].

Facts about closures

A subset S is closed in X if and only if clXS=S. In particular:

  • The closure of the empty set is the empty set;
  • The closure of X itself is X.
  • The closure of an intersection of sets is always a subset of (but need not be equal to) the intersection of the closures of the sets.
  • In a union of finitely many sets, the closure of the union and the union of the closures are equal; the union of zero sets is the empty set, and so this statement contains the earlier statement about the closure of the empty set as a special case.
  • The closure of the union of infinitely many sets need not equal the union of the closures, but it is always a superset of the union of the closures.
    • Thus, just as the union of two closed sets is closed, so too does closure distribute over binary unions: that is, clX(ST)=(clXS)(clXT). But just as a union of infinitely many closed sets is not necessarily closed, so too does closure not necessarily distribute over infinite unions: that is, clX(iISi)iIclXSi is possible when I is infinite.

If STX and if T is a subspace of X (meaning that T is endowed with the subspace topology that X induces on it), then clTSclXS and the closure of S computed in T is equal to the intersection of T and the closure of S computed in X: clTS=TclXS.

Proof

Because clXS is a closed subset of X, the intersection TclXS is a closed subset of T (by definition of the subspace topology), which implies that clTSTclXS (because clTS is the smallest closed subset of T containing S). Because clTS is a closed subset of T, from the definition of the subspace topology, there must exist some set CX such that C is closed in X and clTS=TC. Because SclTSC and C is closed in X, the minimality of clXS implies that clXSC. Intersecting both sides with T shows that TclXSTC=clTS.

It follows that ST is a dense subset of T if and only if T is a subset of clXS. It is possible for clTS=TclXS to be a proper subset of clXS; for example, take X=, S=(0,1), and T=(0,). If S,TX but S is not necessarily a subset of T then only clT(ST)TclXS is always guaranteed, where this containment could be strict (consider for instance X= with the usual topology, T=(,0], and S=(0,)[proof 1]), although if T happens to an open subset of X then the equality clT(ST)=TclXS will hold (no matter the relationship between S and T).

Proof

Let S,TX and assume that T is open in X. Let C:=clT(TS), which is equal to TclX(TS) (because TSTX). The complement TC is open in T, where T being open in X now implies that TC is also open in X. Consequently X(TC)=(XT)C is a closed subset of X where (XT)C contains S as a subset (because if sS is in T then sTSclT(TS)=C), which implies that clXS(XT)C. Intersecting both sides with T proves that TclXSTC=C. The reverse inclusion follows from CclX(TS)clXS.

Consequently, if 𝒰 is any open cover of X and if SX is any subset then: clXS=U𝒰clU(US) because clU(SU)=UclXS for every U𝒰 (where every U𝒰 is endowed with the subspace topology induced on it by X). This equality is particularly useful when X is a manifold and the sets in the open cover 𝒰 are domains of coordinate charts. In words, this result shows that the closure in X of any subset SX can be computed "locally" in the sets of any open cover of X and then unioned together. In this way, this result can be viewed as the analogue of the well-known fact that a subset SX is closed in X if and only if it is "locally closed in X", meaning that if 𝒰 is any open cover of X then S is closed in X if and only if SU is closed in U for every U𝒰.

Functions and closure

Continuity

A function f:XY between topological spaces is continuous if and only if the preimage of every closed subset of the codomain is closed in the domain; explicitly, this means: f1(C) is closed in X whenever C is a closed subset of Y. In terms of the closure operator, f:XY is continuous if and only if for every subset AX, f(clXA)clY(f(A)). That is to say, given any element xX that belongs to the closure of a subset AX, f(x) necessarily belongs to the closure of f(A) in Y. If we declare that a point x is close to a subset AX if xclXA, then this terminology allows for a plain English description of continuity: f is continuous if and only if for every subset AX, f maps points that are close to A to points that are close to f(A). Thus continuous functions are exactly those functions that preserve (in the forward direction) the "closeness" relationship between points and sets: a function is continuous if and only if whenever a point is close to a set then the image of that point is close to the image of that set. Similarly, f is continuous at a fixed given point xX if and only if whenever x is close to a subset AX, then f(x) is close to f(A).

Closed maps

A function f:XY is a (strongly) closed map if and only if whenever C is a closed subset of X then f(C) is a closed subset of Y. In terms of the closure operator, f:XY is a (strongly) closed map if and only if clYf(A)f(clXA) for every subset AX. Equivalently, f:XY is a (strongly) closed map if and only if clYf(C)f(C) for every closed subset CX.

Categorical interpretation

One may define the closure operator in terms of universal arrows, as follows. The powerset of a set X may be realized as a partial order category P in which the objects are subsets and the morphisms are inclusion maps AB whenever A is a subset of B. Furthermore, a topology T on X is a subcategory of P with inclusion functor I:TP. The set of closed subsets containing a fixed subset AX can be identified with the comma category (AI). This category — also a partial order — then has initial object clA. Thus there is a universal arrow from A to I, given by the inclusion AclA. Similarly, since every closed set containing XA corresponds with an open set contained in A we can interpret the category (IXA) as the set of open subsets contained in A, with terminal object int(A), the interior of A. All properties of the closure can be derived from this definition and a few properties of the above categories. Moreover, this definition makes precise the analogy between the topological closure and other types of closures (for example algebraic closure), since all are examples of universal arrows.

See also

Notes

  1. From T:=(,0] and S:=(0,) it follows that ST= and clXS=[0,), which implies =clT(ST)TclXS={0}.

References

  1. Schubert 1968, p. 20
  2. Kuratowski 1966, p. 75
  3. Hocking & Young 1988, p. 4
  4. Croom 1989, p. 104
  5. Gemignani 1990, p. 55, Pervin 1965, p. 40 and Baker 1991, p. 38 use the second property as the definition.
  6. Pervin 1965, p. 41
  7. Zălinescu 2002, p. 33.

Bibliography

  • Baker, Crump W. (1991), Introduction to Topology, Wm. C. Brown Publisher, ISBN 0-697-05972-3
  • Croom, Fred H. (1989), Principles of Topology, Saunders College Publishing, ISBN 0-03-012813-7
  • Gemignani, Michael C. (1990) [1967], Elementary Topology (2nd ed.), Dover, ISBN 0-486-66522-4
  • Hocking, John G.; Young, Gail S. (1988) [1961], Topology, Dover, ISBN 0-486-65676-4
  • Kuratowski, K. (1966), Topology, vol. I, Academic Press
  • Pervin, William J. (1965), Foundations of General Topology, Academic Press
  • Schubert, Horst (1968), Topology, Allyn and Bacon
  • Zălinescu, Constantin (30 July 2002). Convex Analysis in General Vector Spaces. River Edge, N.J. London: World Scientific Publishing. ISBN 978-981-4488-15-0. MR 1921556. OCLC 285163112 – via Internet Archive.

External links