Comparison of programming languages (basic instructions)
This article needs additional citations for verification. (February 2009) |
This article compares a large number of programming languages by tabulating their data types, their expression, statement, and declaration syntax, and some common operating-system interfaces.
Conventions of this article
Generally, var, var, or var is how variable names or other non-literal values to be interpreted by the reader are represented. The rest is literal code. Guillemets («
and »
) enclose optional sections. Tab ↹ indicates a necessary (whitespace) indentation.
The tables are not sorted lexicographically ascending by programming language name by default, and that some languages have entries in some tables but not others.
Type identifiers
Integers
8 bit (byte) | 16 bit (short integer) | 32 bit | 64 bit (long integer) | Word size | Arbitrarily precise (bignum) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | Signed | Unsigned | ||
Ada[1] | range -2**7 .. 2**7 - 1 [j]
|
range 0 .. 2**8 - 1 [j] or mod 2**8 [k]
|
range -2**15 .. 2**15 - 1 [j]
|
range 0 .. 2**16 - 1 [j] or mod 2**16 [k]
|
range -2**31 .. 2**31 - 1 [j]
|
range 0 .. 2**32 - 1 [j] or mod 2**32 [k]
|
range -2**63 .. 2**63 - 1 [j]
|
mod 2**64 [k]
|
Integer [j]
|
range 0 .. 2**Integer' [j] or mod Integer' [k]
|
— |
ALGOL 68 (variable-width) | short short int [c]
|
— | short int [c]
|
— | int [c]
|
— | long int [c]
|
— | int [c]
|
— | long long int [a][g]
|
bytes and bits
| |||||||||||
C (C99 fixed-width) | int8_t
|
uint8_t
|
int16_t
|
uint16_t
|
int32_t
|
uint32_t
|
int64_t
|
uint64_t
|
intptr_t [c]
|
size_t [c]
|
— |
C++ (C++11 fixed-width) | |||||||||||
C (C99 variable-width) | signed char
|
unsigned char
|
short [c]
|
unsigned short [c]
|
long [c]
|
unsigned long [c]
|
long long [c]
|
unsigned long long [c]
|
int [c]
|
unsigned int [c]
| |
C++ (C++11 variable-width) | |||||||||||
Objective-C (Cocoa) | signed char or int8_t
|
unsigned char or uint8_t
|
short or int16_t
|
unsigned short or uint16_t
|
int or int32_t
|
unsigned int or uint32_t
|
long long or int64_t
|
unsigned long long or uint64_t
|
NSInteger or long
|
NSUInteger or unsigned long
| |
C# | sbyte
|
byte
|
short
|
ushort
|
int
|
uint
|
long
|
ulong
|
IntPtr
|
UIntPtr
|
System.Numerics. (.NET 4.0) |
Java | byte
|
— | char [b]
|
— | — | — | — | java.math.
| |||
Go | int8
|
uint8 or byte
|
int16
|
uint16
|
int32
|
uint32
|
int64
|
uint64
|
int
|
uint
|
big.Int
|
Rust | i8
|
u8
|
i16
|
u16
|
i32
|
u32
|
i64
|
u64
|
isize
|
usize
|
— |
Swift | Int8
|
UInt8
|
Int16
|
UInt16
|
Int32
|
UInt32
|
Int64
|
UInt64
|
Int
|
UInt
| |
D | byte
|
ubyte
|
short
|
ushort
|
int
|
uint
|
long
|
ulong
|
— | — | BigInt
|
Common Lisp[2] | (signed-byte 8)
|
(unsigned-byte 8)
|
(signed-byte 16)
|
(unsigned-byte 16)
|
(signed-byte 32)
|
(unsigned-byte 32)
|
(signed-byte 64)
|
(unsigned-byte 64)
|
bignum
| ||
Scheme | |||||||||||
ISLISP[3] | bignum
| ||||||||||
Pascal (FPC) | shortint
|
byte
|
smallint
|
word
|
longint
|
longword
|
int64
|
qword
|
integer
|
cardinal
|
— |
Visual Basic | — | Byte
|
Integer
|
— | Long
|
— | — | — | — | ||
Visual Basic .NET | SByte
|
Short
|
UShort
|
Integer
|
UInteger
|
Long
|
ULong
|
System.Numerics (.NET 4.0) | |||
FreeBasic | Byte or Integer<8>
|
UByte or UInteger<8>
|
Short or Integer<16>
|
UShort or UInteger<16>
|
Long or Integer<32>
|
ULong or UInteger<32>
|
LongInt or Integer<64>
|
ULongInt or UInteger<64>
|
Integer
|
UInteger
|
— |
Python 2.x | — | — | — | — | int
|
— | long
| ||||
Python 3.x | — | — | — | — | — | int
| |||||
S-Lang | — | — | — | — | — | — | |||||
Fortran | INTEGER [f]
|
— | INTEGER [f]
|
— | INTEGER [f]
|
— | INTEGER [f]
|
— | |||
PHP | — | — | int [m]
|
— | int [m]
|
— | — | [e] | |||
Perl 5 | —[d] | —[d] | —[d] | —[d] | —[d] | Math::BigInt
| |||||
Raku | int8
|
uint8
|
int16
|
uint16
|
int32
|
uint32
|
int64
|
uint64
|
Int
|
— | |
Ruby | — | — | — | — | Fixnum
|
— | Bignum
| ||||
Erlang[n] | — | — | — | — | integer()
|
— | integer() [o]
| ||||
Scala | Byte
|
— | Short
|
Char [l]
|
Int
|
— | Long
|
— | — | — | scala.math.BigInt
|
Seed7 | — | — | — | — | — | — | integer
|
— | — | — | bigInteger
|
Smalltalk | — | — | — | — | SmallInteger [i]
|
— | LargeInteger [i]
| ||||
Windows PowerShell | — | — | — | — | — | — | |||||
OCaml | — | — | int32
|
— | int64
|
— | int or nativeint
|
open Big_int;; or big_int
| |||
F# | sbyte
|
byte
|
int16
|
uint16
|
int32 or int
|
uint32
|
uint64
|
nativeint
|
unativeint
|
bigint
| |
Standard ML | — | Word8.word
|
— | Int32.int
|
Word32.word
|
Int64.int
|
Word64.word
|
int
|
word
|
LargeInt.int orIntInf.int
| |
Haskell (GHC) | «import Int» or Int8
|
«import Word» or Word8
|
«import Int» or Int16
|
«import Word» or Word16
|
«import Int» or Int32
|
«import Word» or Word32
|
«import Int» or Int64
|
«import Word» or Word64
|
Int
|
«import Word» or Word
|
Integer
|
Eiffel | INTEGER_8
|
NATURAL_8
|
INTEGER_16
|
NATURAL_16
|
INTEGER_32
|
NATURAL_32
|
INTEGER_64
|
NATURAL_64
|
INTEGER
|
NATURAL
|
— |
COBOL[h] | BINARY-CHAR «SIGNED»
|
BINARY-CHAR UNSIGNED
|
BINARY-SHORT «SIGNED»
|
BINARY-SHORT UNSIGNED
|
BINARY-LONG «SIGNED»
|
BINARY-LONG UNSIGNED
|
BINARY-DOUBLE «SIGNED»
|
BINARY-DOUBLE UNSIGNED
|
— | — | — |
Mathematica | — | — | — | — | — | Integer
| |||||
Wolfram Language | — | — | — | — | — | Integer
|
- ^a The standard constants
int shorts
andint lengths
can be used to determine how manyshort
s andlong
s can be usefully prefixed toshort int
andlong int
. The actual sizes ofshort int
,int
, andlong int
are available as the constantsshort max int
,max int
, andlong max int
etc. - ^b Commonly used for characters.
- ^c The ALGOL 68, C and C++ languages do not specify the exact width of the integer types
short
,int
,long
, and (C99, C++11)long long
, so they are implementation-dependent. In C and C++short
,long
, andlong long
types are required to be at least 16, 32, and 64 bits wide, respectively, but can be more. Theint
type is required to be at least as wide asshort
and at most as wide aslong
, and is typically the width of the word size on the processor of the machine (i.e. on a 32-bit machine it is often 32 bits wide; on 64-bit machines it is sometimes 64 bits wide). C99 and C++11[citation needed] also define the[u]intN_t
exact-width types in the stdint.h header. See C syntax#Integral types for more information. In addition the typessize_t
andptrdiff_t
are defined in relation to the address size to hold unsigned and signed integers sufficiently large to handle array indices and the difference between pointers. - ^d Perl 5 does not have distinct types. Integers, floating point numbers, strings, etc. are all considered "scalars".
- ^e PHP has two arbitrary-precision libraries. The BCMath library just uses strings as datatype. The GMP library uses an internal "resource" type.
- ^f The value of
n
is provided by theSELECTED_INT_KIND
[4] intrinsic function. - ^g ALGOL 68G's runtime option
--precision "number"
can set precision forlong long int
s to the required "number" significant digits. The standard constantslong long int width
andlong long max int
can be used to determine actual precision. - ^h COBOL allows the specification of a required precision and will automatically select an available type capable of representing the specified precision. "
PIC S9999
", for example, would require a signed variable of four decimal digits precision. If specified as a binary field, this would select a 16-bit signed type on most platforms. - ^i Smalltalk automatically chooses an appropriate representation for integral numbers. Typically, two representations are present, one for integers fitting the native word size minus any tag bit (SmallInteger) and one supporting arbitrary sized integers (LargeInteger). Arithmetic operations support polymorphic arguments and return the result in the most appropriate compact representation.
- ^j Ada range types are checked for boundary violations at run-time (as well as at compile-time for static expressions). Run-time boundary violations raise a "constraint error" exception. Ranges are not restricted to powers of two. Commonly predefined Integer subtypes are: Positive (
range 1 .. Integer'Last
) and Natural (range 0 .. Integer'Last
).Short_Short_Integer
(8 bits),Short_Integer
(16 bits) andLong_Integer
(64 bits) are also commonly predefined, but not required by the Ada standard. Runtime checks can be disabled if performance is more important than integrity checks. - ^k Ada modulo types implement modulo arithmetic in all operations, i.e. no range violations are possible. Modulos are not restricted to powers of two.
- ^l Commonly used for characters like Java's char.
- ^m
int
in PHP has the same width aslong
type in C has on that system.[c] - ^n Erlang is dynamically typed. The type identifiers are usually used to specify types of record fields and the argument and return types of functions.[5]
- ^o When it exceeds one word.[6]
Floating point
Single precision | Double precision | Other precision | Processor dependent | |
---|---|---|---|---|
Ada[1] | Float
|
Long_Float
|
— | |
ALGOL 68 | real [a]
|
long real [a]
|
short real , long long real , etc.[d]
| |
C | float [b]
|
double
|
long double [f]
| |
C++ (STL) | ||||
Objective-C (Cocoa) | CGFloat
| |||
C# | float
|
— | ||
Java | ||||
Go | float32
|
float64
| ||
Rust | f32
|
f64
| ||
Swift | Float or Float32
|
Double or Float64
|
Float80 [g]
|
CGFloat
|
D | float
|
double
|
real
| |
Common Lisp | single-float
|
double-float
|
float, short-float, long-float
| |
Scheme | ||||
ISLISP | ||||
Pascal (FPC) | single
|
double
|
real
| |
Visual Basic | Single
|
Double
|
— | |
Visual Basic .NET | ||||
Xojo | ||||
Python | — | float
|
||
JavaScript | Number [7]
|
— | ||
S-Lang | ||||
Fortran | REAL(KIND = n) [c]
|
|||
PHP | float
|
|||
Perl | ||||
Raku | num32
|
num64
|
Num
| |
Ruby | — | Float
|
— | |
Scala | Float
|
Double
| ||
Seed7 | — | float
| ||
Smalltalk | Float
|
Double
| ||
Windows PowerShell | ||||
OCaml | — | float
|
— | |
F# | float32
| |||
Standard ML | — | real
| ||
Haskell (GHC) | Float
|
Double
|
||
Eiffel | REAL_32
|
REAL_64
|
||
COBOL | FLOAT-BINARY-7 [e]
|
FLOAT-BINARY-34 [e]
|
FLOAT-SHORT , FLOAT-LONG , FLOAT-EXTENDED
| |
Mathematica | — | — | Real
|
- ^a The standard constants
real shorts
andreal lengths
can be used to determine how manyshort
s andlong
s can be usefully prefixed toshort real
andlong real
. The actual sizes ofshort real
,real
, andlong real
are available as the constantsshort max real
,max real
andlong max real
etc. With the constantsshort small real
,small real
andlong small real
available for each type's machine epsilon. - ^b declarations of single precision often are not honored
- ^c The value of
n
is provided by theSELECTED_REAL_KIND
[8] intrinsic function. - ^d ALGOL 68G's runtime option
--precision "number"
can set precision forlong long real
s to the required "number" significant digits. The standard constantslong long real width
andlong long max real
can be used to determine actual precision. - ^e These IEEE floating-point types will be introduced in the next COBOL standard.
- ^f Same size as
double
on many implementations. - ^g Swift supports 80-bit extended precision floating point type, equivalent to
long double
in C languages.
Complex numbers
Integer | Single precision | Double precision | Half and Quadruple precision etc. | |
---|---|---|---|---|
Ada[1] | — | Complex [b]
|
Complex [b]
|
Complex [b]
|
ALGOL 68 | — | compl
|
long compl etc.
|
short compl etc. and long long compl etc.
|
C (C99)[9] | — | float complex
|
double complex
|
— |
C++ (STL) | — | std::complex<float>
|
std::complex<double>
| |
C# | — | — | System.Numerics.Complex (.NET 4.0) | |
Java | — | — | — | |
Go | — | complex64
|
complex128
| |
D | — | cfloat
|
cdouble
| |
Objective-C | — | — | — | |
Common Lisp | (complex integer) | (complex single-float) | (complex double-float) | complex |
Scheme | — | |||
Pascal | — | — | ||
Visual Basic | — | — | ||
Visual Basic .NET | — | — | System.Numerics.Complex (.NET 4.0) | |
Perl | Math::Complex
|
|||
Raku | complex64
|
complex128
|
Complex
| |
Python | complex
|
— | ||
JavaScript | — | — | ||
S-Lang | — | — | ||
Fortran | COMPLEX(KIND = n) [a]
| |||
Ruby | Complex
|
— | Complex
| |
Scala | — | — | — | |
Seed7 | — | — | complex
| |
Smalltalk | Complex
|
Complex
|
Complex
| |
Windows PowerShell | — | — | ||
OCaml | — | — | Complex.t
| |
F# | System.Numerics.Complex (.NET 4.0) | |||
Standard ML | — | — | — | |
Haskell (GHC) | — | Complex.Complex Float
|
Complex.Complex Double
| |
Eiffel | — | — | — | |
COBOL | — | — | — | |
Mathematica | Complex
|
— | — | Complex
|
- ^a The value of
n
is provided by theSELECTED_REAL_KIND
[8] intrinsic function. - ^b Generic type which can be instantiated with any base floating point type.
Other variable types
Text | Boolean | Enumeration | Object/Universal | ||
---|---|---|---|---|---|
Character | String[a] | ||||
Ada[1] | Character
|
String , Bounded_String , Unbounded_String
|
Boolean
|
(item1, item2, ...)
|
tagged null record
|
ALGOL 68 | char
|
string , bytes
|
bool , bits
|
— - User defined | — |
C (C99) | char , wchar_t
|
— | bool [b]
|
enum «name» { item1, item2, ... };
|
void *
|
C++ (STL) | «std::»string
| ||||
Objective-C | unichar
|
NSString *
|
BOOL
|
id
| |
C# | char
|
string
|
bool
|
enum name { item1« = value», item2« = value», ... }
|
object |
Java | String
|
boolean
|
enum name { item1, item2, ... }
|
Object
| |
Go | byte , rune
|
string
|
bool
|
const (
|
interface{}
|
Rust | char
|
String
|
bool
|
enum name { item1« = value», item2« = value», ... }
|
std::any::Any
|
Swift | Character
|
String
|
Bool
|
enum name { case item1, item2, ... }
|
Any
|
D | char
|
string
|
bool
|
enum name { item1, item2, ... }
|
std.variant.Variant
|
Common Lisp | character
|
string
|
boolean
|
(member item1 item2 ...)
|
t
|
Scheme | |||||
ISLISP | |||||
Pascal (ISO) | char
|
— | boolean
|
( item1, item2, ... )
|
— |
Object Pascal (Delphi) | string
|
variant
| |||
Visual Basic | — | String
|
Boolean
|
Enum name
|
[[Variant type|Variant]]
|
Visual Basic .NET | Char
|
Object
| |||
Xojo | — | Object or Variant
| |||
Python | —[d] | str
|
bool
|
from enum import Enum
|
object
|
JavaScript | —[d] | String
|
Boolean
|
Object
| |
S-Lang | |||||
Fortran | CHARACTER(LEN = *)
|
CHARACTER(LEN = :), allocatable
|
LOGICAL(KIND = n) [f]
|
CLASS(*)
| |
PHP | —[d] | string
|
bool
|
(type declaration omitted) | |
Perl | —[d] | UNIVERSAL
| |||
Raku | Char
|
Str
|
Bool
|
enum name<item1 item2 ...> enum name <<:item1(value) :item2(value) ..>>
|
Mu
|
Ruby | —[d] | String
|
Object [c]
|
Object
| |
Scala | Char
|
String
|
Boolean
|
object name extends Enumeration {
|
Any
|
Seed7 | char
|
string
|
boolean
|
const type: name is new enum
|
|
Windows PowerShell | |||||
OCaml | char
|
string
|
bool
|
—[e] | — |
F# | type name = item1 = value |item2 = value | ...
|
obj
| |||
Standard ML | —[e] | — | |||
Haskell (GHC) | Char
|
String
|
Bool
|
—[e] | — |
Eiffel | CHARACTER
|
STRING
|
BOOLEAN
|
— | ANY
|
COBOL | PIC X
|
PIC X(string length) or PIC X«X...»
|
PIC 1«(number of digits)» or PIC 1«1...»
|
— | OBJECT REFERENCE
|
Mathematica | —[d] | String
|
— |
- ^a specifically, strings of arbitrary length and automatically managed.
- ^b This language represents a boolean as an integer where false is represented as a value of zero and true by a non-zero value.
- ^c All values evaluate to either true or false. Everything in
TrueClass
evaluates to true and everything inFalseClass
evaluates to false. - ^d This language does not have a separate character type. Characters are represented as strings of length 1.
- ^e Enumerations in this language are algebraic types with only nullary constructors
- ^f The value of
n
is provided by theSELECTED_INT_KIND
[4] intrinsic function.
Derived types
Array
fixed size array | dynamic size array | |||
---|---|---|---|---|
one-dimensional array | multidimensional array | one-dimensional array | multidimensional array | |
Ada[1] | array (<first> .. <last>) of <type> or array (<discrete_type>) of <type>
|
array (<first1> .. <last1>, <first2> .. <last2>, ...) of <type> or array (<discrete_type1>, <discrete_type2>, ...) of <type>
|
array (<discrete_type> range <>) of <type>
|
array (<discrete_type1> range <>, <discrete_type2> range <>, ...) of <type>
|
ALGOL 68 | [first:last] or simply: [size]
|
[first1:last1, first2:last2] or [first1:last1][first2:last2] etc. |
flex[first:last] or simply: flex[size]
|
flex[first1:last1, first2:last2] or flex[first1:last1]
|
C (C99) | type name[size] [a]
|
type name[size1][size2] [a]
|
type *name or within a block: int n = ...; type name[n]
|
|
C++ (STL) | «std::»array<type, size> (C++11)
|
«std::»vector<type>
| ||
C# | type[]
|
type[,,...]
|
System or System
|
|
Java | type[] [b]
|
type[][]... [b]
|
ArrayList or ArrayList<type>
|
|
D | type[size]
|
type[size1][size2]
|
type[]
|
|
Go | [size]type
|
[size1][size2]...type
|
[]type
|
[][]type
|
Rust | [type; size]
|
[[type; size1]; size2]
|
Vec<type>
|
Vec<Vec<type>>
|
Swift | [type] or Array<type>
|
[[type]] or Array<Array<type>>
| ||
Objective-C | NSArray
|
NSMutableArray
|
||
JavaScript | — | — | Array [d]
| |
Common Lisp | (simple-array type (dimension))
|
(simple-array type (dimension1 dimension2))
|
(array type (dimension))
|
(array type (dimension1 dimension2))
|
Scheme | ||||
ISLISP | ||||
Pascal | array[first..last] of type [c]
|
array[first1..last1] of array[first2..last2] ... of type [c]or array[first1..last1, first2..last2, ...] of type [c]
|
— | — |
Object Pascal (Delphi) | array of type
|
array of array ... of type
| ||
Visual Basic | Dim x(last) As type
|
Dim x(last1, last2,...) As type
|
||
Visual Basic .NET | type()
|
type(,,...)
|
System or System
|
|
Python | list
|
|||
S-Lang | x = type[size];
|
x = type[size1, size2, ...];
|
||
Fortran | type :: name(size)
|
type :: name(size1, size2,...)
|
type, ALLOCATABLE :: name(:)
|
type, ALLOCATABLE :: name(:,:,...)
|
PHP | array
|
|||
Perl | ||||
Raku | Array[type] or Array of type
|
|||
Ruby | x = Array.new(size1){ Array.new(size2) }
|
Array
|
||
Scala | Array[type]
|
Array[...[Array[type]]...]
|
ArrayBuffer[type]
|
|
Seed7 | array type or array [idxType] type
|
array array type or array [idxType] array [idxType] type
|
array type or array [idxType] type
|
array array type or array [idxType] array [idxType] type
|
Smalltalk | Array
|
OrderedCollection
|
||
Windows PowerShell | type[]
|
type[,,...]
|
||
OCaml | type array
|
type array ... array
|
||
F# | type [] or type array
|
type [,,...]
|
System or System
|
|
Standard ML | type vector or type array
|
|||
Haskell (GHC) | x = Array.array (0, size-1) list_of_association_pairs
|
x = Array.array ((0, 0,...), (size1-1, size2-1,...)) list_of_association_pairs
|
||
COBOL | level-number type OCCURS size «TIMES».
|
one-dimensional array definition... | level-number type OCCURS min-size TO max-size «TIMES» DEPENDING «ON» size. [e]
|
— |
- ^a In most expressions (except the
sizeof
and&
operators), values of array types in C are automatically converted to a pointer of its first argument. See C syntax#Arrays for further details of syntax and pointer operations. - ^b The C-like
type x[]
works in Java, howevertype[] x
is the preferred form of array declaration. - ^c Subranges are used to define the bounds of the array.
- ^d JavaScript's array are a special kind of object.
- ^e The
DEPENDING ON
clause in COBOL does not create a true variable length array and will always allocate the maximum size of the array.
Other types
Simple composite types | Algebraic data types | Unions | ||
---|---|---|---|---|
Records | Tuple expression | |||
Ada[1] | type name is «abstract» «tagged» «limited» [record
|
— | Any combination of records, unions, and enumerations (as well as references to those, enabling recursive types). | type name (variation : discrete_type) is record
|
ALGOL 68 | struct (modename «fieldname», ...);
|
Required types and operators can be user-defined | union (modename, ...);
| |
C (C99) | struct «name» {type name;...};
|
— | — | union {type name;...};
|
Objective-C | ||||
C++ | struct «name» {type name;...}; [b]
|
«std::»tuple<type1..typen>
| ||
C# | struct name {type name;...}
|
(val1, val2, ... )
|
— | |
Java | —[a] | |||
JavaScript | — | |||
D | struct name {type name;...}
|
std.variant.Algebraic!(type,...)
|
union {type name;...}
| |
Go | struct {
|
|||
Rust | struct name {name: type, ...}
|
(val1, val2, ... )
|
enum name { Foo(types), ...}
|
union name {name: type, ...}
|
Swift | struct name {
|
(«name1:» val1, «name2:» val2, «name3:» val3, ... )
|
enum name { case Foo«(types)» case Bar «(types)» ... }
|
|
Common Lisp | (defstruct name slot-name (slot-name initial-value) (slot-name initial-value :type type) ...)
|
(cons val1 val2) [c]
|
||
Scheme | — | |||
ISLISP | ||||
Pascal | record
|
— | — | record
|
Visual Basic | ||||
Visual Basic .NET | Structure name
|
(val1, val2, ... )
|
||
Python | —[a] | «(»val1, val2, val3, ... «)»
|
— | |
S-Lang | struct {name [=value], ...}
|
|||
Fortran | TYPE name
|
|||
PHP | —[a] | |||
Perl | —[d] | — | ||
Raku | —[a] | |||
Ruby | OpenStruct.new({:name => value})
|
|||
Scala | case class name(«var» name: type, ...)
|
(val1, val2, val3, ... )
|
abstract class name or abstract class name or a combination of case classes and case objects |
|
Windows PowerShell | ||||
OCaml | type name = {«mutable» name : type;...}
|
«(»val1, val2, val3, ... «)»
|
type name = Foo «of type» | Bar «of type» | ...
|
— |
F# | ||||
Standard ML | type name = {name : type,...}
|
(val1, val2, val3, ... )
|
datatype name = Foo «of type» | Bar «of type» | ...
| |
Haskell | data Name = Constr {name :: type,...}
|
data Name = Foo «types» | Bar «types» | ...
| ||
COBOL | level-number name type clauses.
|
— | — | name REDEFINES variable type.
|
- ^a Only classes are supported.
- ^b
struct
s in C++ are actually classes, but have default public visibility and are also POD objects. C++11 extended this further, to make classes act identically to POD objects in many more cases. - ^c pair only
- ^d Although Perl doesn't have records, because Perl's type system allows different data types to be in an array, "hashes" (associative arrays) that don't have a variable index would effectively be the same as records.
- ^e Enumerations in this language are algebraic types with only nullary constructors
Variable and constant declarations
variable | constant | type synonym | |
---|---|---|---|
Ada[1] | identifier : type« := initial_value» [e]
|
identifier : constant type := final_value
|
subtype identifier is type
|
ALGOL 68 | modename name« := initial_value»;
|
modename name = value;
|
mode synonym = modename;
|
C (C99) | type name« = initial_value»;
|
enum{ name = value };
|
typedef type synonym;
|
Objective-C | |||
C++ | const type name = value;
| ||
C# | type name1« = initial_value», name2« = initial_value», ...; or var name = initial_value;
|
const type name = value, name = value, ...; or readonly type name = value, name = value, ... ;
|
using synonym = type;
|
D | type name« = initial_value»; or auto name = value;
|
const type name = value; or immutable type name = value;
|
alias type synonym;
|
Java | type name« = initial_value»;
|
final type name = value;
|
— |
JavaScript | var name« = initial_value»; orlet name« = initial_value»; (since ECMAScript 2015)
|
const name = value; (since ECMAScript 2015)
| |
Go | var name type« = initial_value» or name := initial_value
|
const name «type» = value
|
type synonym type
|
Rust[f] | let mut name«: type»« = initial_value»; static mut NAME: type = value;
|
let name«: type»« = initial_value»; const NAME: type = value; static NAME: type = value;
|
type synonym = typename;
|
Swift | var name «: type»« = initial_value»
|
let name «: type» = value
|
typealias synonym = type
|
Common Lisp | (defparameter name initial-value) or (defvar name initial-value)
|
(defconstant name value)
|
(deftype synonym () 'type)
|
Scheme | (define name initial_value)
|
||
ISLISP | (defglobal name initial_value) or (defdynamic name initial_value)
|
(defconstant name value)
|
— |
Pascal[a] | name: type« = initial_value»
|
name = value
|
synonym = type
|
Visual Basic | Dim name «As type»
|
See notes to left.
Constants use the same syntax, and:
|
|
Visual Basic .NET[10] | The variable declaration syntax of VB.NET is unusually difficult to precisely describe.
Given that there exist the identifier suffixes ("modifiers"):
and that
valid declaration statements are of the form
and for which, for each
If |
Imports synonym = type
| |
Xojo | Dim name «As type»« = initial_value»
|
— | |
Python | name«: type» = initial_value
|
— | synonym = type [b]
|
CoffeeScript | name = initial_value
| ||
S-Lang | name = initial_value;
|
typedef struct {...} typename
| |
Fortran | type :: name
|
type, PARAMETER :: name = value
|
|
PHP | $name = initial_value;
|
define("name", value);
|
— |
Perl | «my» $name« = initial_value»; [c]
|
use constant name => value;
| |
Raku | «my «type»» $name« = initial_value»; [c]
|
«my «type»» constant name = value;
|
::synonym ::= type
|
Ruby | name = initial_value
|
Name = value
|
synonym = type [b]
|
Scala | var name«: type» = initial_value
|
val name«: type» = value
|
type synonym = type
|
Windows PowerShell | «[type]» $name = initial_value
|
— | — |
Bash shell | name=initial_value
|
— | — |
OCaml | let name« : type ref» = ref value [d]
|
let name «: type» = value
|
type synonym = type
|
F# | let mutable name «: type» = value
| ||
Standard ML | val name «: type ref» = ref value [d]
|
val name «: type» = value
| |
Haskell | «name::type;» name = value
|
type Synonym = type
| |
Forth | VARIABLE name (in some systems use value VARIABLE name instead)
|
value CONSTANT name
|
|
COBOL | level-number name type clauses.
|
«0»1 name CONSTANT «AS» value.
|
level-number name type clauses «IS» TYPEDEF.
|
Mathematica | name=initial_value
|
— | — |
- ^a Pascal has declaration blocks. See functions.
- ^b Types are just regular objects, so you can just assign them.
- ^c In Perl, the "my" keyword scopes the variable into the block.
- ^d Technically, this does not declare name to be a mutable variable—in ML, all names can only be bound once; rather, it declares name to point to a "reference" data structure, which is a simple mutable cell. The data structure can then be read and written to using the
!
and:=
operators, respectively. - ^e If no initial value is given, an invalid value is automatically assigned (which will trigger a run-time exception if it used before a valid value has been assigned). While this behaviour can be suppressed it is recommended in the interest of predictability. If no invalid value can be found for a type (for example in case of an unconstraint integer type), a valid, yet predictable value is chosen instead.
- ^f In Rust, if no initial value is given to a
let
orlet mut
variable and it is never assigned to later, there is an "unused variable" warning. If no value is provided for aconst
orstatic
orstatic mut
variable, there is an error. There is a "non-upper-case globals" error for non-uppercaseconst
variables. After it is defined, astatic mut
variable can only be assigned to in anunsafe
block or function.
Control flow
Conditional statements
if | else if | select case | conditional expression | |
---|---|---|---|---|
Ada[1] | if condition then
|
if condition1 then
|
case expression is
|
(if condition1 then or (case expression is
|
Seed7 | if condition then
|
if condition1 then
|
case expression of
|
|
Modula-2 | if condition then
|
if condition1 then
|
case expression of
|
|
ALGOL 68 | if condition then statements «else statements» fi
|
if condition then statements elif condition then statements fi
|
case switch in statements, statements«,... out statements» esac
|
( condition | valueIfTrue | valueIfFalse )
|
ALGOL 68 (brief form) |
( condition | statements «| statements» )
|
( condition | statements |: condition | statements )
|
( variable | statements,... «| statements» )
|
|
APL | :If condition
|
:If condition
|
:Select expression
|
{condition:valueIfTrue ⋄ valueIfFalse}
|
C (C99) | if (condition) instructions instructions can be a single statement or a block in the form of: { statements }
|
if (condition) instructions or if (condition) instructions
|
switch (variable) {
|
condition ? valueIfTrue : valueIfFalse
|
Objective-C | ||||
C++ (STL) | ||||
D | ||||
Java | ||||
JavaScript | ||||
PHP | ||||
C# | if (condition) instructions
|
if (condition) instructions
|
switch (variable)
All non-empty cases must end with a |
condition ? valueIfTrue : valueIfFalse
|
Windows PowerShell | if (condition) instruction
|
if (condition) { instructions }
|
switch (variable) { case1{instructions «break;» } ... «default { instructions }»}
|
|
Go | if condition {instructions}
|
if condition {instructions} or switch {
|
switch variable {
|
|
Swift | if condition {instructions}
|
if condition {instructions}
|
switch variable {
|
|
Perl | if (condition) {instructions} or unless (notcondition) {instructions}
|
if (condition) {instructions} or unless (notcondition) {instructions}
|
use feature "switch";
|
condition ? valueIfTrue : valueIfFalse
|
Raku | if condition {instructions} or unless notcondition {instructions}
|
if condition {instructions}
|
given variable {
|
condition ?? valueIfTrue !! valueIfFalse
|
Ruby | if condition
|
if condition
|
case variable
|
condition ? valueIfTrue : valueIfFalse
|
Scala | if (condition) {instructions}
|
if (condition) {instructions}
|
expression match { [b]
|
if (condition) valueIfTrue else valueIfFalse
|
Smalltalk | condition ifTrue:
|
condition ifTrue: trueBlock ifFalse: falseBlock
| ||
Common Lisp | (when condition or (unless condition or (if condition
|
(cond (condition1 instructions)
|
(case expression
|
(if test then else) or (cond (test1 value1) (test2 value2) ...))
|
Scheme | (when condition instructions) or (if condition (begin instructions) «(begin instructions)»)
|
(cond (condition1 instructions) (condition2 instructions) ... «(else instructions)»)
|
(case (variable) ((case1) instructions) ((case2) instructions) ... «(else instructions)»)
|
(if condition valueIfTrue valueIfFalse)
|
ISLISP | (if condition
|
(cond (condition1 instructions)
|
(case expression
|
(if condition valueIfTrue valueIfFalse)
|
Pascal | if condition then begin [c]
|
if condition then begin [c]
|
case variable of [c]
| |
Visual Basic | If condition Then Single-line, when instructions are instruction1 : instruction2 : ... :If condition Then instructions «Else instructions»
|
If condition Then Single-line: See note about C-like languages; the Else clause of a single-line If statement can contain another single-line If statement.
|
Select« Case» variable
|
IIf(condition, valueIfTrue, valueIfFalse)
|
Visual Basic .NET | If(condition, valueIfTrue, valueIfFalse)
| |||
Xojo | ||||
Python[a] | if condition :
|
if condition :
|
Python 3.10+:match variable:
|
Python 2.5+:valueIfTrue if condition else valueIfFalse
|
S-Lang | if (condition) { instructions } «else { instructions }»
|
if (condition) { instructions } else if (condition) { instructions } ... «else { instructions }»
|
switch (variable) { case case1: instructions } { case case2: instructions } ...
|
|
Fortran | IF (condition) THEN
|
IF (condition) THEN
|
SELECT CASE(variable)
|
|
Forth | condition IF instructions « ELSE instructions» THEN
|
condition IF instructions ELSE condition IF instructions THEN THEN
|
value CASE
|
condition IF valueIfTrue ELSE valueIfFalse THEN
|
OCaml | if condition then begin instructions end «else begin instructions end»
|
if condition then begin instructions end else if condition then begin instructions end ... «else begin instructions end»
|
match value with [b]
|
if condition then valueIfTrue else valueIfFalse
|
F# | Lightweight syntax mode:
Either on a single line or with indentation as shown below:
|
Lightweight syntax mode: Either on a single line or with indentation as shown below: if condition then Verbose syntax mode: Same as Standard ML. | ||
Standard ML | if condition then «(»instructions «)»
|
if condition then «(»instructions «)»
|
case value of [b]
| |
Haskell (GHC) | if condition then expression else expression or when condition (do instructions) or unless notcondition (do instructions)
|
result | condition = expression
|
case value of { [b]
| |
Bash shell | if condition-command; then
|
if condition-command; then
|
case "$variable" in
|
|
CoffeeScript | if condition then expression «else expression» or if condition or expression if condition or unless condition or expression unless condition
|
if condition then expression else if condition then expression «else expression» or if condition or unless condition
|
switch expression or switch expression
|
All conditions are expressions. |
COBOL | IF condition «THEN» [d]
|
EVALUATE expression «ALSO expression...»
|
||
Rust | if condition {
|
if condition {
|
match variable { [b][e]
|
All conditions are expressions |
if | else if | select case | conditional expression |
- ^a A single instruction can be written on the same line following the colon. Multiple instructions are grouped together in a block which starts on a newline (The indentation is required). The conditional expression syntax does not follow this rule.
- ^b This is pattern matching and is similar to select case but not the same. It is usually used to deconstruct algebraic data types.
- ^c In languages of the Pascal family, the semicolon is not part of the statement. It is a separator between statements, not a terminator.
- ^d
END-IF
may be used instead of the period at the end. - ^e In Rust, the comma (
,
) at the end of a match arm can be omitted after the last match arm, or after any match arm in which the expression is a block (ends in possibly empty matching brackets{}
).
Loop statements
while loop | do while loop | (count-controlled) for loop | foreach | |
---|---|---|---|---|
Ada[1] | while condition loop
|
loop
|
for index in «reverse» [first .. last | discrete_type] loop
|
for item of «reverse» iterator loop or (for [all | some] [in | of] [first .. last | discrete_type | iterator] => predicate) [b]
|
ALGOL 68 | «for index» «from first» «by increment» «to last» «while condition» do statements od
|
for key «to upb list» do «typename val=list[key];» statements od
| ||
«while condition»
|
«while statements; condition»
|
«for index» «from first» «by increment» «to last» do statements od
| ||
APL | :While condition
|
:Repeat
|
:For var«s» :In list
|
:For var«s» :InEach list
|
C (C99) | instructions can be a single statement or a block in the form of: { statements } while (condition) instructions
|
do instructions while (condition);
|
for («type» i = first; i <= last; i++) instructions
|
— |
Objective-C | for (type item in set) instructions
| |||
C++ (STL) | «std::»for_each(start, end, function) Since C++11: for (type item : set) instructions
| |||
C# | foreach (type item in set) instructions
| |||
Java | for (type item : set) instructions
| |||
JavaScript | for (var i = first; i <= last; i++) instructions
|
Since EcmaScript 2015:[11]
| ||
PHP | foreach (range(first, last) as $i) instructions or for ($i = first; $i <= last; $i++) instructions
|
foreach (set as item) instructions or foreach (set as key => item) instructions
| ||
Windows PowerShell | for ($i = first; $i -le last; $i++) instructions
|
foreach (item in set) instructions
| ||
D | foreach (i; first ... last) instructions
|
foreach («type» item; set) instructions
| ||
Go | for condition { instructions }
|
for i := first; i <= last; i++ { instructions }
|
for key, item := range set { instructions }
| |
Swift | while condition { instructions }
|
2.x:repeat { instructions } while condition 1.x: do { instructions } while condition
|
for i = first ... last { instructions } or for i = first ..< last+1 { instructions } or for var i = first; i <= last; i++ { instructions }
|
for item in set { instructions }
|
Perl | while (condition) { instructions } or until (notcondition) { instructions }
|
do { instructions } while (condition) or do { instructions } until (notcondition)
|
for«each» «$i» (first .. last) { instructions } or for ($i = first; $i <= last; $i++) { instructions }
|
for«each» «$item» (set) { instructions }
|
Raku | while condition { instructions } or until notcondition { instructions }
|
repeat { instructions } while condition or repeat { instructions } until notcondition
|
for first..last -> $i { instructions } or loop ($i = first; $i <=last; $i++) { instructions }
|
for set« -> $item» { instructions }
|
Ruby | while condition or until notcondition
|
begin or begin
|
for i in first..last or for i in first...last+1 or first.upto(last) { |i| instructions }
|
for item in set or set.each { |item| instructions }
|
Bash shell | while condition ;do or until notcondition ;do
|
— | for ((i = first; i <= last; ++i)) ; do
|
for item in set ;do
|
Scala | while (condition) { instructions }
|
do { instructions } while (condition)
|
for (i <- first to last «by 1») { instructions } or first to last «by 1» foreach (i => { instructions })
|
for (item <- set) { instructions } or set foreach (item => { instructions })
|
Smalltalk | conditionBlock whileTrue:
|
loopBlock doWhile:
|
first to: last do:
|
collection do:
|
Common Lisp | (loop or (do () (notcondition)
|
(loop
|
(loop or (dotimes (i N) or (do ((i first (1+ i))) ((>=i last))
|
(loop or (loop or (dolist (item list) or (mapc function list) or (map type function sequence)
|
Scheme | (do () (notcondition) instructions) or (let loop () (if condition (begin instructions (loop))))
|
(let loop () (instructions (if condition (loop))))
|
(do ((i first (+ i 1))) ((>= i last)) instructions) or (let loop ((i first)) (if (< i last) (begin instructions (loop (+ i 1)))))
|
(for-each (lambda (item) instructions) list)
|
ISLISP | (while condition instructions)
|
(tagbody loop instructions (if condition (go loop))
|
(for ((i first (+ i 1))) ((>= i last)) instructions)
|
(mapc (lambda (item) instructions) list)
|
Pascal | while condition do begin
|
repeat
|
for i := first «step 1» to last do begin [a]
|
for item in set do instructions
|
Visual Basic | Do While condition or Do Until notcondition or While condition (Visual Basic .NET uses End While instead)
|
Do or Do
|
i must be declared beforehand.
|
For Each item In set
|
Visual Basic .NET | For i« As type» = first To last« Step 1» [a]
|
For Each item« As type» In set
| ||
Xojo | While condition
|
Do Until notcondition or Do
| ||
Python | while condition :
|
— | Python 3.x:for i in range(first, last+1): Python 2.x: for i in xrange(first, last+1):
|
for item in set:
|
S-Lang | while (condition) { instructions } «then optional-block»
|
do { instructions } while (condition) «then optional-block»
|
for (i = first; i <= last; i++) { instructions } «then optional-block»
|
foreach item(set) «using (what)» { instructions } «then optional-block»
|
Fortran | DO WHILE (condition)
|
DO
|
DO I = first,last
|
— |
Forth | BEGIN «instructions» condition WHILE instructions REPEAT
|
BEGIN instructions condition UNTIL
|
limit start DO instructions LOOP
|
— |
OCaml | while condition do instructions done
|
— | for i = first to last do instructions done
|
Array.iter (fun item -> instructions) array or List.iter (fun item -> instructions) list
|
F# | while condition do
|
— | for i = first to last do
|
foritem in set do or Seq.iter (fun item -> instructions) set
|
Standard ML | while condition do ( instructions )
|
— | Array.app (fn item => instructions) array or app (fn item => instructions) list
| |
Haskell (GHC) | — | Control.Monad.forM_ [first..last] (\i -> do instructions)
|
Control.Monad.forM_list (\item -> do instructions)
| |
Eiffel | from
| |||
CoffeeScript | while condition or expression while condition or while condition then expression or until condition or expression until condition or until expression then condition
|
— | for i in [first..last] or for i in [first..last] then expression or expression for i in [first..last]
|
for item in set or for item in set then expression or expression for item in set
|
COBOL | PERFORM procedure-1 «THROUGH procedure-2» ««WITH» TEST BEFORE» UNTIL condition [c]or PERFORM ««WITH» TEST BEFORE» UNTIL condition
|
PERFORM procedure-1 «THROUGH procedure-2» «WITH» TEST AFTER UNTIL condition [c]or PERFORM «WITH» TEST AFTER UNTIL condition
|
PERFORM procedure-1 «THROUGH procedure-2» VARYING i FROM first BY increment UNTIL i > last [d]or PERFORM VARYING i FROM first BY increment UNTIL i > last [d]
|
— |
Rust | while condition {
|
loop {
|
for i in first..last+1 { or for i in first..=last {
|
for item in set { [e]or set.into_iter().for_each(|item| expression); [e]
|
- ^a "
step
n" is used to change the loop interval. If "step
" is omitted, then the loop interval is 1. - ^b This implements the universal quantifier ("for all" or "") as well as the existential quantifier ("there exists" or "").
- ^c
THRU
may be used instead ofTHROUGH
. - ^d
«IS» GREATER «THAN»
may be used instead of>
. - ^e Type of set expression must implement trait
std::iter::IntoIterator
.
Exceptions
throw | handler | assertion | |
---|---|---|---|
Ada[1] | raise exception_name «with string_expression»
|
begin [b]
|
pragma Assert («Check =>» boolean_expression ««Message =>» string_expression»)
|
APL | «string_expression» ⎕SIGNAL number_expression
|
:Trap number«s»_expression
|
«string_expression» ⎕SIGNAL 98/⍨~condition
|
C (C99) | longjmp(state, exception);
|
switch (setjmp(state)) { case 0: instructions break; case exception: instructions ... }
|
assert(condition);
|
C++ | throw exception;
|
try { instructions } catch «(exception)» { instructions } ...
| |
C# | try { instructions } catch «(exception« name»)» { instructions } ... «finally { instructions }»
|
System.Diagnostics.Debug.Assert(condition); or System.Diagnostics.Trace.Assert(condition);
| |
Java | try { instructions } catch (exception) { instructions } ... «finally { instructions }»
|
assert condition «: description»;
| |
JavaScript | try { instructions } catch (exception) { instructions} «finally { instructions }»
|
? | |
D | try { instructions } catch (exception) { instructions } ... «finally { instructions }»
|
assert(condition);
| |
PHP | try { instructions } catch (exception) { instructions } ... «finally { instructions }»
|
assert(condition);
| |
S-Lang | try { instructions } catch «exception» { instructions } ... «finally { instructions }»
|
? | |
Windows PowerShell | trap «[exception]» { instructions } ... instructions or try { instructions } catch «[exception]» { instructions } ... «finally { instructions }»
|
[Debug]::Assert(condition)
| |
Objective-C | @throw exception;
|
@try { instructions } @catch (exception) { instructions } ... «@finally { instructions }»
|
NSAssert(condition, description);
|
Swift | throw exception (2.x)
|
do { try expression ... instructions } catch exception { instructions } ... (2.x)
|
assert(condition«, description»)
|
Perl | die exception;
|
eval { instructions }; if ($@) { instructions }
|
? |
Raku | try { instructions CATCH { when exception { instructions } ...}}
|
? | |
Ruby | raise exception
|
begin
|
|
Smalltalk | exception raise
|
instructionBlock on: exception do: handlerBlock
|
assert: conditionBlock
|
Common Lisp | (error "exception") or (error or (error (make-condition
|
(handler-case or (handler-bind [a]
|
(assert condition) or (assert condition or (check-type var type)
|
Scheme (R6RS) | (raise exception)
|
(guard (con (condition instructions) ...) instructions)
|
? |
ISLISP | (error "error-string" objects) or (signal-condition condition continuable)
|
(with-handler
|
? |
Pascal | raise Exception.Create()
|
try Except on E: exception do begin instructions end; end;
|
? |
Visual Basic | Err.Raise ERRORNUMBER
|
With New Try: On Error Resume Next '*** Try class ***
Private mstrDescription As String
Private mlngNumber As Long
Public Sub Catch()
mstrDescription = Err.Description
mlngNumber = Err.Number
End Sub
Public Property Get Number() As Long
Number = mlngNumber
End Property
Public Property Get Description() As String
Description = mstrDescription
End Property
|
Debug.Assert condition
|
Visual Basic .NET | Throw exception or Error errorcode
|
Try
|
System.Diagnostics. Debug.Assert(condition) or System.Diagnostics.Trace.Assert(condition)
|
Xojo | Raise exception
|
Try
|
— |
Python | raise exception
|
try:
|
assert condition
|
Fortran | — | ||
Forth | code THROW
|
xt CATCH ( code or 0 )
|
— |
OCaml | raise exception
|
try expression with pattern -> expression ...
|
assert condition
|
F# | try expression with pattern -> expression ... or try expression finally expression
| ||
Standard ML | raise exception «arg»
|
expression handle pattern => expression ...
|
|
Haskell (GHC) | throw exception or throwError expression
|
catch tryExpression catchExpression or catchError tryExpression catchExpression
|
assert condition expression
|
COBOL | RAISE «EXCEPTION» exception
|
USE «AFTER» EXCEPTION OBJECT class-name. or USE «AFTER» EO class-name. or USE «AFTER» EXCEPTION CONDITION exception-name «FILE file-name». or USE «AFTER» EC exception-name «FILE file-name».
|
— |
Rust | No[13] | assert!(condition)
|
- ^a Common Lisp allows
with-simple-restart
,restart-case
andrestart-bind
to define restarts for use withinvoke-restart
. Unhandled conditions may cause the implementation to show a restarts menu to the user before unwinding the stack. - ^b Uncaught exceptions are propagated to the innermost dynamically enclosing execution. Exceptions are not propagated across tasks (unless these tasks are currently synchronised in a rendezvous).
Other control flow statements
exit block (break) | continue | label | branch (goto) | return value from generator | |
---|---|---|---|---|---|
Ada[1] | exit «loop_name» «when condition»
|
— | label:
|
goto label
|
— |
ALGOL 68 | value exit; ...
|
do statements; skip exit; label: statements od
|
label: ...
|
go to label; ...
|
yield(value)
|
APL | :Leave
|
:Continue
|
label:
|
→label or :GoTo label
|
— |
C (C99) | break;
|
continue;
|
label:
|
goto label;
|
— |
Objective-C | |||||
C++ (STL) | |||||
D | |||||
C# | yield return value;
| ||||
Java | break «label»;
|
continue «label»;
|
— | ||
JavaScript | yield value«;»
| ||||
PHP | break «levels»;
|
continue «levels»;
|
goto label;
|
yield «key =>» value;
| |
Perl | last «label»;
|
next «label»;
|
|||
Raku | |||||
Go | break «label»
|
continue «label»
|
goto label
|
||
Swift | break «label»
|
continue «label»
|
— | ||
Bash shell | break «levels»
|
continue «levels»
|
— | — | — |
Common Lisp | (return) or (return-from block) or (loop-finish)
|
(tagbody tag
|
(go tag)
|
||
Scheme | |||||
ISLISP | (return-from block)
|
(tagbody tag
|
(go tag)
|
||
Pascal (ISO) | — | label: [a]
|
goto label;
|
— | |
Pascal (FPC) | break;
|
continue;
| |||
Visual Basic | Exit block Alternatively, for methods,Return
|
— | label:
|
GoTo label
| |
Xojo | Continue block
| ||||
Visual Basic .NET | Yield value
| ||||
Python | break
|
continue
|
— | yield value
| |
RPG IV | LEAVE;
|
ITER;
|
|||
S-Lang | break;
|
continue;
|
|||
Fortran | EXIT
|
CYCLE
|
label [b]
|
GOTO label
|
— |
Ruby | break
|
next
|
|||
Windows PowerShell | break «label»
|
continue
|
|||
OCaml | — | ||||
F# | |||||
Standard ML | |||||
Haskell (GHC) | |||||
COBOL | EXIT PERFORM or EXIT PARAGRAPH or EXIT SECTION or EXIT.
|
EXIT PERFORM CYCLE
|
label «SECTION».
|
GO TO label
|
— |
Functions
See reflective programming for calling and declaring functions by strings.
calling a function | basic/void function | value-returning function | required main function | |
---|---|---|---|---|
Ada[1] | foo «(parameters)»
|
procedure foo «(parameters)» is begin statements end foo
|
function foo «(parameters)» return type is begin statements end foo
|
— |
ALGOL 68 | foo «(parameters)»;
|
proc foo = «(parameters)» void: ( instructions );
|
proc foo = «(parameters)» rettype: ( instructions ...; retvalue );
|
— |
APL | «parameters» foo parameters
|
foo←{ statements }
|
foo←{ statements }
|
— |
C (C99) | foo(«parameters»)
|
void foo(«parameters») { instructions }
|
type foo(«parameters») { instructions ... return value; }
|
«global declarations»
|
Objective-C | ||||
C++ (STL) | ||||
Java | public static void main(String[] args) { instructions } or public static void main(String... args) { instructions }
| |||
D | int main(«char[][] args») { instructions} or int main(«string[] args») { instructions} or void main(«char[][] args») { instructions} or void main(«string[] args») { instructions}
| |||
C# | Same as above; alternatively, if only one statement:
|
Same as above; alternatively, if simple enough to be an expression:
|
static void Main(«string[] args») method_body May instead return int .(starting with C# 7.1:) May return Task or Task<int> , and if so, may be async .
| |
JavaScript | function foo(«parameters») { instructions } or var foo = function («parameters») { instructions } or var foo = new Function ("«parameter»", ..., "«last parameter»" "instructions");
|
function foo(«parameters») { instructions ... return value; }
|
— | |
Go | func foo(«parameters») { instructions }
|
func foo(«parameters») type { instructions ... return value }
|
func main() { instructions }
| |
Swift | func foo(«parameters») { instructions }
|
func foo(«parameters») -> type { instructions ... return value }
|
— | |
Common Lisp | (foo «parameters»)
|
(defun foo («parameters») or (setf (symbol-function 'symbol)
|
(defun foo («parameters»)
|
— |
Scheme | (define (foo parameters) instructions) or (define foo (lambda (parameters) instructions))
|
(define (foo parameters) instructions... return_value) or (define foo (lambda (parameters) instructions... return_value))
| ||
ISLISP | (defun foo («parameters»)
|
(defun foo («parameters»)
| ||
Pascal | foo«(parameters)»
|
procedure foo«(parameters)»; «forward;»[a]
|
function foo«(parameters)»: type; «forward;»[a]
|
program name;
|
Visual Basic | Foo(«parameters»)
|
Sub Foo«(parameters)»
|
Function Foo«(parameters)»« As type»
|
Sub Main()
|
Visual Basic .NET | Same as above; alternatively:
|
Sub Main(««ByVal »args() As String») orFunction Main(««ByVal »args() As String») As Integer
| ||
Xojo | ||||
Python | foo(«parameters»)
|
def foo(«parameters»):
|
def foo(«parameters»):
|
— |
S-Lang | foo(«parameters» «;qualifiers»)
|
define foo («parameters») { instructions }
|
define foo («parameters») { instructions ... return value; }
|
public define slsh_main () { instructions }
|
Fortran | foo («arguments») [c]
|
SUBROUTINE sub_foo («arguments») [c]
|
type FUNCTION foo («arguments») [c]
|
PROGRAM main
|
Forth | «parameters» FOO
|
: FOO « stack effect comment: ( before -- ) »
|
: FOO « stack effect comment: ( before -- after ) »
|
— |
PHP | foo(«parameters»)
|
function foo(«parameters») { instructions }
|
function foo(«parameters») { instructions ... return value; }
|
— |
Perl | foo(«parameters») or &foo«(parameters)»
|
sub foo { «my (parameters) = @_;» instructions }
|
sub foo { «my (parameters) = @_;» instructions... «return» value; }
| |
Raku | foo(«parameters») or &foo«(parameters)»
|
«multi »sub foo(parameters) { instructions }
|
«our «type» »«multi »sub foo(parameters) { instructions ... «return» value; }
| |
Ruby | foo«(parameters)»
|
def foo«(parameters)»
|
def foo«(parameters)»
| |
Rust | foo(«parameters»)
|
fn foo(«parameters») { instructions }
|
fn foo(«parameters») -> type { instructions }
|
fn main() { instructions }
|
Scala | foo«(parameters)»
|
def foo«(parameters)»«: Unit =» { instructions }
|
def foo«(parameters)»«: type» = { instructions ... «return» value }
|
def main(args: Array[String]) { instructions }
|
Windows PowerShell | foo «parameters»
|
function foo { instructions }; or function foo { «param(parameters)» instructions }
|
function foo «(parameters)» { instructions ... return value }; or function foo { «param(parameters)» instructions ... return value }
|
— |
Bash shell | foo «parameters»
|
function foo { or foo () {
|
function foo { or foo () {
| |
| ||||
OCaml | foo parameters
|
let «rec» foo parameters = instructions
|
let «rec» foo parameters = instructions... return_value
| |
F# | [<EntryPoint>] let main args = instructions
| |||
Standard ML | fun foo parameters = ( instructions )
|
fun foo parameters = ( instructions... return_value )
|
||
Haskell | foo parameters = do
|
foo parameters = return_value or foo parameters = do
|
«main :: IO ()»
| |
Eiffel | foo («parameters»)
|
foo («parameters»)
|
foo («parameters»): type
|
[b] |
CoffeeScript | foo()
|
foo = ->
|
foo = -> value
|
— |
foo parameters
|
foo = () ->
|
foo = ( parameters ) -> value
| ||
COBOL | CALL "foo" «USING parameters» [d]
|
«IDENTIFICATION DIVISION.»
|
«IDENTIFICATION DIVISION.»
|
— |
«FUNCTION» foo«(«parameters»)»
|
— |
- ^a Pascal requires "
forward;
" for forward declarations. - ^b Eiffel allows the specification of an application's root class and feature.
- ^c In Fortran, function/subroutine parameters are called arguments (since
PARAMETER
is a language keyword); theCALL
keyword is required for subroutines. - ^d Instead of using
"foo"
, a string variable may be used instead containing the same value.
Type conversions
Where string is a signed decimal number:
string to integer | string to long integer | string to floating point | integer to string | floating point to string | |
---|---|---|---|---|---|
Ada[1] | Integer'Value (string_expression)
|
Long_Integer'Value (string_expression)
|
Float'Value (string_expression)
|
Integer'Image (integer_expression)
|
Float'Image (float_expression)
|
ALGOL 68 with general, and then specific formats | With prior declarations and association of: string buf := "12345678.9012e34 "; file proxy; associate(proxy, buf);
| ||||
get(proxy, ivar);
|
get(proxy, livar);
|
get(proxy, rvar);
|
put(proxy, ival);
|
put(proxy, rval);
| |
getf(proxy, ($g$, ivar)); or getf(proxy, ($dddd$, ivar));
|
getf(proxy, ($g$, livar)); or getf(proxy, ($8d$, livar));
|
getf(proxy, ($g$, rvar)); or getf(proxy, ($8d.4dE2d$, rvar));
|
putf(proxy, ($g$, ival)); or putf(proxy, ($4d$, ival));
|
putf(proxy, ($g(width, places, exp)$, rval)); or putf(proxy, ($8d.4dE2d$, rval));
| |
APL | ⍎string_expression
|
⍎string_expression
|
⍎string_expression
|
⍕integer_expression
|
⍕float_expression
|
C (C99) | integer = atoi(string);
|
long = atol(string);
|
float = atof(string);
|
sprintf(string, "%i", integer);
|
sprintf(string, "%f", float);
|
Objective-C | integer = [string intValue];
|
long = [string longLongValue];
|
float = [string doubleValue];
|
string = [NSString stringWithFormat
|
string = [NSString stringWithFormat
|
C++ (STL) | «std::»istringstream(string) >> number;
|
«std::»ostringstream o; o << number; string = o.str();
| |||
C++11 | integer = «std::»stoi(string);
|
long = «std::»stol(string);
|
float = «std::»stof(string); double = «std::»stod(string);
|
string = «std::»to_string(number);
| |
C# | integer = int.Parse
|
long = long.Parse
|
float = float.Parse double = double.Parse
|
string = number
| |
D | integer = std.conv.to!int
|
long = std.conv.to!long
|
float = std.conv.to!float double = std.conv.to!double
|
string = std.conv.to!string
| |
Java | integer = Integer.parseInt
|
long = Long.parseLong
|
float = Float.parseFloat double = Double.parseDouble
|
string = Integer.toString string = String.valueOf
|
string = Float.toString string = Double.toString
|
JavaScript[a] | integer = parseInt(string);
|
float = parseFloat(string); float = new Number (string); float = Number (string); float = +string;
|
string = number.toString (); string = String (number); string = number+""; string = `${number}`
| ||
Go | integer, error = strconv.Atoi(string)
|
long, error = strconv.ParseInt
|
float, error = strconv.ParseFloat
|
string = strconv.Itoa(integer) string = strconv.FormatInt string = fmt.Sprint(integer)
|
string = strconv.FormatFloat string = fmt.Sprint
|
Rust[d] | string.parse::<i32>() i32::from_str(string)
|
string.parse::<i64>() i64::from_str(string)
|
string.parse::<f64>() f64::from_str(string)
|
integer.to_string()
|
float.to_string()
|
Common Lisp | (setf integer (parse-integer string))
|
(setf float (read-from-string string))
|
(setf string (princ-to-string number))
| ||
Scheme | (define number (string->number string))
|
(define string (number->string number))
| |||
ISLISP | (setf integer (convert string <integer>))
|
(setf float (convert string <float>))
|
(setf string (convert number <string>))
| ||
Pascal | integer := StrToInt(string);
|
float := StrToFloat(string);
|
string := IntToStr(integer);
|
string := FloatToStr(float);
| |
Visual Basic | integer = CInt(string)
|
long = CLng(string)
|
float = CSng(string)
|
string = CStr(number)
|
|
Visual Basic .NET (can use both VB syntax above and .NET methods shown right) |
integer = Integer.Parse
|
long = Long.Parse
|
float = Single.Parse double = Double.Parse
|
string = number
| |
Xojo | integer = Val(string)
|
long = Val(string)
|
double = Val(string) double = CDbl(string)
|
string = CStr(number) or string = Str(number)
| |
Python | integer = int(string)
|
long = long(string)
|
float = float(string)
|
string = str(number)
| |
S-Lang | integer = atoi(string);
|
long = atol(string);
|
float = atof(string);
|
string = string(number);
| |
Fortran | READ(string,format) number
|
WRITE(string,format) number
| |||
PHP | integer = intval(string); or integer = (int)string;
|
float = floatval(string); float = (float)string;
|
string = "$number"; or string = strval(number); or string = (string)number;
| ||
Perl[b] | number = 0 + string;
|
string = "number";
| |||
Raku | number = +string;
|
string = ~number;
| |||
Ruby | integer = string.to_i or integer = Integer(string)
|
float = string.to_f float = Float(string)
|
string = number.to_s
| ||
Scala | integer = string.toInt
|
long = string.toLong
|
float = string.toFloat double = string.toDouble
|
string = number.toString
| |
Smalltalk | integer := Integer readFrom: string
|
float := Float readFrom: string
|
string := number asString
| ||
Windows PowerShell | integer = [int]string
|
long = [long]string
|
float = [float]string
|
string = [string]number; or string = "number"; or string = (number).ToString()
| |
OCaml | let integer = int_
|
let float = float_
|
let string = string_
|
let string = string_
| |
F# | let integer = int string
|
let integer = int64 string
|
let float = float string
|
let string = string number
| |
Standard ML | val integer = Int
|
val float = Real
|
val string = Int
|
val string = Real
| |
Haskell (GHC) | number = read string
|
string = show number
| |||
COBOL | MOVE «FUNCTION» NUMVAL(string)[c] TO number
|
MOVE number TO numeric-edited
|
- ^a JavaScript only uses floating point numbers so there are some technicalities.[7]
- ^b Perl doesn't have separate types. Strings and numbers are interchangeable.
- ^c
NUMVAL-C
orNUMVAL-F
may be used instead ofNUMVAL
. - ^
str::parse
is available to convert any type that has an implementation of thestd::str::FromStr
trait. Bothstr::parse
andFromStr::from_str
return aResult
that contains the specified type if there is no error. The turbofish (::<_>
) onstr::parse
can be omitted if the type can be inferred from context.
Standard stream I/O
read from | write to | ||
---|---|---|---|
stdin | stdout | stderr | |
Ada[1] | Get (x)
|
Put (x)
|
Put (Standard_Error, x)
|
ALGOL 68 | readf(($format$, x)); or getf(stand in, ($format$, x));
|
printf(($format$, x)); or putf(stand out, ($format$, x));
|
putf(stand error, ($format$, x)); [a]
|
APL | x←⎕
|
⎕←x
|
⍞←x
|
C (C99) | scanf(format, &x); or fscanf(stdin, format, &x); [b]
|
printf(format, x); or fprintf(stdout, format, x); [c]
|
fprintf(stderr, format, x); [d]
|
Objective-C | data = [[NSFileHandle fileHandleWithStandardInput] readDataToEndOfFile];
|
[[NSFileHandle fileHandleWithStandardOutput] writeData:data];
|
[[NSFileHandle fileHandleWithStandardError] writeData:data];
|
C++ | «std::»cin >> x; or «std::»getline(«std::»cin, str);
|
«std::»cout << x;
|
«std::»cerr << x; or «std::»clog << x;
|
C# | x = Console.Read(); or x = Console.ReadLine();
|
Console.Write(«format, »x); or Console.WriteLine(«format, »x);
|
Console.Error or Console.Error
|
D | x = std.stdio.readln()
|
std.stdio.write(x) or std.stdio.writeln(x) or std.stdio.writef(format, x) or std.stdio.writefln(format, x)
|
stderr.write(x) or stderr.writeln(x) or std.stdio or std.stdio
|
Java | x = System.in.read(); or x = new Scanner(System.in).nextInt(); or x = new Scanner(System.in).nextLine();
|
System.out.print(x); or System.out.printf(format, x); or System.out.println(x);
|
System.err.print(x); or System.err.printf(format, x); or System.err.println(x);
|
Go | fmt.Scan(&x) or fmt.Scanf(format, &x) or x = bufio.NewReader(os.Stdin).ReadString('\n')
|
fmt.Println(x) or fmt.Printf(format, x)
|
fmt.Fprintln(os.Stderr, x) or fmt.Fprintf(os.Stderr, format, x)
|
Swift | x = readLine() (2.x)
|
print(x) (2.x)println(x) (1.x)
|
|
JavaScript Web Browser implementation |
document.write(x)
|
||
JavaScript Active Server Pages |
Response.Write(x)
|
||
JavaScript Windows Script Host |
x = WScript.StdIn.Read(chars) or x = WScript.StdIn.ReadLine()
|
WScript.Echo(x) or WScript.StdOut.Write(x) or WScript.StdOut.WriteLine(x)
|
WScript.StdErr.Write(x) or WScript.StdErr.WriteLine(x)
|
Common Lisp | (setf x (read-line))
|
(princ x) or (format t format x)
|
(princ x *error-output*) or
|
Scheme (R6RS) | (define x (read-line))
|
(display x) or
|
(display x (current-error-port)) or
|
ISLISP | (setf x (read-line))
|
|
|
Pascal | read(x); or readln(x);
|
write(x); or writeln(x);
|
write(stderr, x); or writeln(stderr, x);
|
Visual Basic | Input« prompt,» x
|
Print x or ? x
|
— |
Visual Basic .NET | x = Console.Read() or x = Console.ReadLine()
|
Console.Write(«format,»x) or Console.WriteLine(«format, »x)
|
Console.Error or Console.Error
|
Xojo | x = StandardInputStream.Read() or x = StandardInputStreame.ReadLine()
|
StandardOutputStream.Write(x) or StandardOutputStream.WriteLine(x)
|
StdErr.Write(x) or StdErr.WriteLine(x)
|
Python 2.x | x = raw_input(«prompt»)
|
print x or sys.stdout.write(x)
|
or sys.stderr.write(x)
|
Python 3.x | x = input(«prompt»)
|
print(x«, end=""»)
|
print(x«, end=""», file=sys.stderr)
|
S-Lang | fgets (&x, stdin)
|
fputs (x, stdout)
|
fputs (x, stderr)
|
Fortran | READ(*,format) variable names or READ(INPUT_UNIT,format) variable names [e]
|
WRITE(*,format) expressions or WRITE(OUTPUT_UNIT,format) expressions [e]
|
WRITE(ERROR_UNIT,format) expressions [e]
|
Forth | buffer length ACCEPT ( # chars read )
|
buffer length TYPE
|
— |
PHP | $x = fgets(STDIN); or $x = fscanf(STDIN, format);
|
print x; or echo x; or printf(format, x);
|
fprintf(STDERR, format, x);
|
Perl | $x = <>; or $x = <STDIN>;
|
print x; or printf format, x;
|
print STDERR x; or printf STDERR format, x;
|
Raku | $x = $*IN.get;
|
x.print or x.say
|
x.note or $*ERR.print(x) or $*ERR.say(x)
|
Ruby | x = gets
|
puts x or printf(format, x)
|
$stderr.puts(x) or $stderr.printf(format, x)
|
Windows PowerShell | $x = Read-Host«« -Prompt» text»; or $x = [Console]::Read(); or $x = [Console]::ReadLine()
|
x; or Write-Output x; or echo x
|
Write-Error x
|
OCaml | let x = read_int () or let str = read_line () or Scanf.scanf format (fun x ... -> ...)
|
print_int x or print_endline str or Printf.printf format x ...
|
prerr_int x or prerr_endline str or Printf.eprintf format x ...
|
F# | let x = System.Console.ReadLine()
|
printf format x ... or printfn format x ...
|
eprintf format x ... or eprintfn format x ...
|
Standard ML | val str = TextIO.inputLIne TextIO.stdIn
|
print str
|
|
Haskell (GHC) | x <- readLn or str <- getLine
|
print x or putStrLn str
|
hPrint stderr x or hPutStrLn stderr str
|
COBOL | ACCEPT x
|
DISPLAY x
|
- ^a ALGOL 68 additionally as the "unformatted" transput routines:
read
,write
,get
, andput
. - ^b
gets(x)
andfgets(x, length, stdin)
read unformatted text from stdin. Use of gets is not recommended. - ^c
puts(x)
andfputs(x, stdout)
write unformatted text to stdout. - ^d
fputs(x, stderr)
writes unformatted text to stderr - ^e INPUT_UNIT, OUTPUT_UNIT, ERROR_UNIT are defined in the ISO_FORTRAN_ENV module.[15]
Reading command-line arguments
Argument values | Argument counts | Program name / Script name | |
---|---|---|---|
Ada[1] | Argument (n)
|
Argument_Count
|
Command_Name
|
C (C99) | argv[n]
|
argc
|
first argument |
Objective-C | |||
C++ | |||
C# | args[n]
|
args.Length
|
Assembly.GetEntryAssembly()
|
Java | args.length
|
||
D | first argument | ||
JavaScript Windows Script Host implementation |
WScript.Arguments(n)
|
WScript.Arguments.length
|
WScript.ScriptName or WScript.ScriptFullName
|
Go | os.Args[n]
|
len(os.Args)
|
first argument |
Rust[a] | std::env::args().nth(n) std::env::args_os().nth(n)
|
std::env::args().count() std::env::args_os().count()
|
std::env::args().next() std::env::args_os().next()
|
Swift | Process.arguments[n] orProcess.unsafeArgv[n]
|
Process.arguments.count orProcess.argc
|
first argument |
Common Lisp | ? | ? | ? |
Scheme (R6RS) | (list-ref (command-line) n)
|
(length (command-line))
|
first argument |
ISLISP | — | — | — |
Pascal | ParamStr(n)
|
ParamCount
|
first argument |
Visual Basic | Command [b]
|
— | App.Path
|
Visual Basic .NET | CmdArgs(n)
|
CmdArgs.Length
|
[Assembly].GetEntryAssembly().Location
|
Xojo | System.CommandLine
|
(string parsing) | Application.ExecutableFile.Name
|
Python | sys.argv[n]
|
len(sys.argv)
|
first argument |
S-Lang | __argv[n]
|
__argc
|
first argument |
Fortran | DO i = 1,argc
|
argc = COMMAND_ARGUMENT_COUNT ()
|
CALL GET_COMMAND_ARGUMENT (0,progname)
|
PHP | $argv[n]
|
$argc
|
first argument |
Bash shell | $n ($1, $2, $3, ...) $@ (all arguments)
|
$#
|
$0
|
Perl | $ARGV[n]
|
scalar(@ARGV)
|
$0
|
Raku | @*ARGS[n]
|
@*ARGS.elems
|
$PROGRAM_NAME
|
Ruby | ARGV[n]
|
ARGV.size
|
$0
|
Windows PowerShell | $args[n]
|
$args.Length
|
$MyInvocation.MyCommand
|
OCaml | Sys.argv.(n)
|
Array.length Sys.argv
|
first argument |
F# | args.[n]
|
args.Length
|
Assembly.GetEntryAssembly()
|
Standard ML | List.nth (CommandLine.arguments (), n)
|
length (CommandLine.arguments ())
|
CommandLine.name ()
|
Haskell (GHC) | do { args <- System.getArgs; return length args !! n }
|
do { args <- System.getArgs; return length args }
|
System.getProgName
|
COBOL | [c] | — |
- ^a In Rust,
std::env::args
andstd::env::args_os
return iterators,std::env::Args
andstd::env::ArgsOs
respectively.Args
converts each argument to aString
and it panics if it reaches an argument that cannot be converted to UTF-8.ArgsOs
returns a non-lossy representation of the raw strings from the operating system (std::ffi::OsString
), which can be invalid UTF-8. - ^b In Visual Basic, command-line arguments are not separated. Separating them requires a split function
Split(string)
. - ^c The COBOL standard includes no means to access command-line arguments, but common compiler extensions to access them include defining parameters for the main program or using
ACCEPT
statements.
Execution of commands
Shell command | Execute program | Replace current program with new executed program | |
---|---|---|---|
Ada[1] | Not part of the language standard. Commonly done by compiler provided packages or by interfacing to C or POSIX.[16] | ||
C | system("command");
|
execl(path, args); or execv(path, arglist);
| |
C++ | |||
Objective-C | [NSTask launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray *)arguments];
|
||
C# | System.Diagnostics
|
||
F# | |||
Go | exec.Run(path, argv, envv, dir, exec.DevNull, exec.DevNull, exec.DevNull)
|
os.Exec(path, argv, envv)
| |
Visual Basic | Interaction.Shell(command «, WindowStyle» «, isWaitOnReturn»)
|
||
Visual Basic .NET | Microsoft.VisualBasic
|
System.Diagnostics
|
|
Xojo | Shell.Execute(command «, Parameters»)
|
FolderItem.Launch(parameters, activate)
|
— |
D | std.process.system("command");
|
std.process.execv(path, arglist);
| |
Java | Runtime.exec(command); or new ProcessBuilder(command).start();
|
||
JavaScript Windows Script Host implementation |
|
WshShell.Exec(command)
|
|
Common Lisp | (uiop:run-program command)
|
||
Scheme | (system command)
|
||
ISLISP | — | — | — |
Pascal | system(command);
|
||
OCaml | Sys.command command, Unix.open_process_full command env (stdout, stdin, stderr),...
|
Unix.create_process prog args new_stdin new_stdout new_stderr, ...
|
Unix.execv prog args or Unix.execve prog args env
|
Standard ML | OS.Process.system command
|
Unix.execute (path, args)
|
Posix.Process.exec (path, args)
|
Haskell (GHC) | System.system command
|
System.Process
|
Posix.Process
|
Perl | system(command) or $output = `command` or $output = qx(command)
|
exec(path, args)
| |
Ruby | system(command) or output = `command`
|
exec(path, args)
| |
PHP | system(command) or $output = `command` or exec(command) or passthru(command)
|
||
Python | os.system(command) or subprocess.Popen(command)
|
subprocess.call(["program", "arg1", "arg2", ...])
|
os.execv(path, args)
|
S-Lang | system(command)
|
||
Fortran | CALL EXECUTE_COMMAND_LINE (COMMAND «, WAIT» «, EXITSTAT» «, CMDSTAT» «, CMDMSG») [a]
|
||
Windows PowerShell | [Diagnostics.Process]::Start(command)
|
«Invoke-Item »program arg1 arg2 ...
|
|
Bash shell | output=`command` or output=$(command)
|
program arg1 arg2 ...
|
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 Ada Reference Manual – Language and Standard Libraries; ISO/IEC 8652:201x (E), "Reference Manual" (PDF). Archived from the original (PDF) on 2011-04-27. Retrieved 2013-07-19.
- ↑ "Common Lisp HyperSpec (TM)". lispworks.com. Retrieved 30 January 2017.
- ↑ "www.islisp.info: Specification". islisp.info. Archived from the original on 22 January 2016. Retrieved 30 January 2017.
- ↑ 4.0 4.1 "selected_int_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017.
- ↑ "Erlang — Types and Function Specifications". erlang.org. Retrieved 30 January 2017.
- ↑ "Erlang — Advanced". erlang.org. Retrieved 30 January 2017.
- ↑ 7.0 7.1 8.5 The Number Type
- ↑ 8.0 8.1 "selected_real_kind in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017.
- ↑ "The GNU C Library: Complex Numbers". gnu.org. Retrieved 30 January 2017.
- ↑ "Grammar vb". Visual Basic Language Specification. 2016-06-17. Archived from the original on 2019-08-29. Retrieved 2019-08-29.
- ↑ "for...of". mozilla.org. Retrieved 30 January 2017.
- ↑ "Try-Catch for VB". google.com. Archived from the original on 16 April 2016. Retrieved 30 January 2017.
- ↑ Klabnik, Steve; Nichols, Carol. "Error Handling". The Rust Programming Language.
- ↑ "Prime decomposition – Rosetta Code". rosettacode.org. Retrieved 30 January 2017.
- ↑ "iso_fortran_env in Fortran Wiki". fortranwiki.org. Retrieved 30 January 2017.
- ↑ "Execute a system command – Rosetta Code". rosettacode.org. Retrieved 30 January 2017.
- ↑ "EXECUTE_COMMAND_LINE – The GNU Fortran Compiler". gnu.org. Retrieved 30 January 2017.