Constant curvature

From The Right Wiki
Jump to navigationJump to search

In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry.[1] The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature.

Classification

The Riemannian manifolds of constant curvature can be classified into the following three cases:

Properties

References

  1. Caminha, A. (2006-07-01). "On spacelike hypersurfaces of constant sectional curvature lorentz manifolds". Journal of Geometry and Physics. 56 (7): 1144–1174. doi:10.1016/j.geomphys.2005.06.007. ISSN 0393-0440.

Further reading