De Rham–Weil theorem

From The Right Wiki
(Redirected from De Rham-Weil theorem)
Jump to navigationJump to search

In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question. Let be a sheaf on a topological space X and a resolution of by acyclic sheaves. Then

Hq(X,)Hq((X)),

where Hq(X,) denotes the q-th sheaf cohomology group of X with coefficients in . The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.

See also

References

  • De Rham, Georges (1931). Sur l'analysis situs des variétés à n dimensions. Thèses de l'entre-deux-guerres. Vol. 129.
  • Samelson, Hans (1967). "On de Rham's theorem". Topology. 6 (4): 427–432. doi:10.1016/0040-9383(67)90002-X.
  • Weil, André (1952). "Sur les théorèmes de de Rham". Commentarii Mathematici Helvetici. 26: 119–145. doi:10.1007/BF02564296. S2CID 124799328.

This article incorporates material from De Rham–Weil theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.