Earth section paths

From The Right Wiki
(Redirected from Earth section)
Jump to navigationJump to search
Plane section of an ellipsoid

Earth section paths are plane curves defined by the intersection of an earth ellipsoid and a plane (ellipsoid plane sections). Common examples include the great ellipse (containing the center of the ellipsoid) and normal sections (containing an ellipsoid normal direction). Earth section paths are useful as approximate solutions for geodetic problems, the direct and inverse calculation of geographic distances. The rigorous solution of geodetic problems involves skew curves known as geodesics.

Inverse problem

The inverse problem for earth sections is: given two points, P1 and P2 on the surface of the reference ellipsoid, find the length, s12, of the short arc of a spheroid section from P1 to P2 and also find the departure and arrival azimuths (angle from true north) of that curve, α1 and α2. The figure to the right illustrates the notation used here. Let Pk have geodetic latitude ϕk and longitude λk (k=1,2). This problem is best solved using analytic geometry in earth-centered, earth-fixed (ECEF) Cartesian coordinates. Let R1=ECEF(P1) and R2=ECEF(P2) be the ECEF coordinates of the two points, computed using the geodetic to ECEF transformation discussed here.

This illustrates the notation used for the geodetic problems discussed here.

Section plane

To define the section plane select any third point R0 not on the line from R1 to R2. Choosing R0 to be on the surface normal at P1 will define the normal section at P1. If R0 is the origin then the earth section is the great ellipse. (The origin would be co-linear with 2 antipodal points so a different point must be used in that case). Since there are infinitely many choices for R0, the above problem is really a class of problems (one for each plane). Let R0 be given. To put the equation of the plane into the standard form, lx+my+nz=d, where l2+m2+n2=1, requires the components of a unit vector, N^=(l,m,n), normal to the section plane. These components may be computed as follows: The vector from R0 to R1 is V0=R1R0, and the vector from R1 to R2 is V1=R2R1. Therefore, N^=unit(V0×V1)), where unit(V) is the unit vector in the direction of V. The orientation convention used here is that N^ points to the left of the path. If this is not the case then redefine V0=V0. Finally, the parameter d for the plane may be computed using the dot product of N^ with a vector from the origin to any point on the plane, such as R1, i.e. d=N^R1. The equation of the plane (in vector form) is thus N^R=d, where R is the position vector of (x,y,z).

Azimuth

Examination of the ENU to ECEF transformation reveals that the ECEF coordinates of a unit vector pointing east at any point on the ellipsoid is: e^=(sinλ,cosλ,0), a unit vector pointing north is n^=(sinϕcosλ,sinϕsinλ,cosϕ), and a unit vector pointing up is u^=(cosϕcosλ,cosϕsinλ,sinϕ). A vector tangent to the path is: t=N^×u^ so the east component of t is te^, and the north component is tn^. Therefore, the azimuth may be obtained from a two-argument arctangent function, α=atan2(te^,tn^). Use this method at both P1 and P2 to get α1 and α2.

Section ellipse

The (non-trivial) intersection of a plane and ellipsoid is an ellipse. Therefore, the arc length, s12, on the section path from P1 to P2 is an elliptic integral that may be computed to any desired accuracy using a truncated series or numerical integration. Before this can be done the ellipse must be defined and the limits of integration computed. Let the ellipsoid given by x2a2+y2a2+z2b2=1, and let p=l2+m2. If p=0 then the section is a horizontal circle of radius a1d2b2, which has no solution if |d|>b. If p>0 then Gilbertson[1] showed that the ECEF coordinates of the center of the ellipse is Rc=dC(la2,ma2,nb2), where C=a2p2+b2n2, the semi-major axis is a*=a1d2C, in the direction i^*=(mp,lp,0), and the semi-minor axis is b*=bCa*, in the direction j^*=(lnp,mnp,p), which has no solution if |d|>C.

Arc Length

The above referenced paper provides a derivation for an arc length formula involving the central angle and powers of e2 to compute the arc length to millimeter accuracy, where e2=1(b*a*)2. That arc length formula may be rearranged and put into the form: s12=s(θ2)s(θ1), where s(θ)=b*(C0θ+C2sin(2θ)+C4sin(4θ)+C6sin(6θ)) and the coefficients are

C0=1.0+e2(1/4+13e2/64+45e4/256+2577e6/16384)
C2=e2(1/8+3e2/32+95e4/1024+385e6/4096)
C4=e4(1/256+5e2/1024+19e4/16384)
C6=e6(15/3072+35e2/4096)

To compute the central angle, let P be any point on the section ellipse and R=ECEF(P). Then V=RRc is a vector from the center of the ellipse to the point. The central angle θ is the angle from the semi-major axis to V. Letting V^=unit(V), we have θ=atan2(V^j^*,V^i^*). In this way we obtain θ1 and θ2. On the other hand it's possible to use Meridian arc formulas in the more general case provided that the section ellipse parameters are used rather than the spheroid parameters. One such rapidly convergent series is given in Series in terms of the parametric latitude. If we use ε to denote the spheroid eccentricity, i.e. ε2=1(ba)2, then e8ε81.8×10−9. Similarly the third flattening of the section ellipse is bounded by the corresponding value for the spheroid, and for the spheroid we have n34.4×10−9, and n47.3×10−12. Therefore it may suffice to ignore terms beyond B6 in the parametric latitude series. To apply s(β)=a*+b*2(B0β+B2sin2β+B4sin4β+B6sin6β) in the current context requires converting the central angle to the parametric angle using β=tan1(tanθ/((1f)), and using the section ellipse third flattening. Whichever method is used, care must be taken when using θ1 & θ2 or β1 & β2 to ensure that the shorter arc connecting the 2 points is used.

Direct problem

The direct problem is given P1, the distance s12, and departure azimuth α1, find P2 and the arrival azimuth α2.

Section plane

The answer to this problem depends the choice of V0. i.e. on the type of section. Observe that V0 must not be in span{n^1,e^1} (otherwise the plane would be tangent to the earth at P1, so no path would result). Having made such a choice, and considering orientation proceed as follows. Construct the tangent vector at P1, t^1=n^1cosα1+e^1sinα1, where n^1 and e^1 are unit vectors pointing north and east (respectively) at P1. The normal vector N^=unit(V0×t^1), together with P1 defines the plane. In other words, the tangent takes the place of the chord since the destination is unknown.

Locate arrival point

This is a 2-d problem in span{i^*,j^*}, which will be solved with the help of the arc length formula above. If the arc length, s12 is given then the problem is to find the corresponding change in the central angle θ12, so that θ2=θ1+θ12 and the position can be calculated. Assuming that we have a series that gives s=s(θ) then what we seek now is θ2=s1(s1+s12). The inverse of the central angle arc length series above may be found on page 8a of Rapp, Vol. 1,[2] who credits Ganshin.[3] An alternative to using the inverse series is using Newton's method of successive approximations to θ12. The inverse meridian problem for the ellipsoid provides the inverse to Bessel's arc length series in terms of the parametric angle. Before the inverse series can be used, the parametric angle series must be used to compute the arc length from the semi-major axis to P1, s1=s(β1)=a*+b*2(B0β1+B2sin2β1+B4sin4β1+B6sin6β1). Once s1 is known apply the inverse formula to obtainβ2=β(s1+s12)=μ2+B'2sin2μ2+B'4sin4μ2+B'6sin6μ2, where μ2=2(s1+s12)/(B0(a*+b*)). Rectangular coordinates in the section plane are x2=a*cosβ2,y2=b*sinβ2. So an ECEF vector may be computed using V2=Rc+(x2i^*+y2j^*). Finally calculate geographic coordinates via P2=Geo(V2) using Bowring's 1985 algorithm,[4] or the algorithm here.

Azimuth

Azimuth may be obtained by the same method as the indirect problem: t2=N^×u^2 and α2=atan2(t2e^2,t2n^2).

Examples

Shows the geodesic deviation for various sections connecting New York to Paris

The great ellipse

The great ellipse is the curve formed by intersecting the ellipsoid with a plane through its center. Therefore, to use the method above, just let R0 be the origin, so that V0=R1 (the position vector of R1). This method avoids the esoteric and sometimes ambiguous formulas of spherical trigonometry, and provides an alternative to the formulas of Bowring.[5] The shortest path between two points on a spheroid is known as a geodesic. Such paths are developed using differential geometry. The equator and meridians are great ellipses that are also geodesics[lower-alpha 1]. The maximum difference in length between a great ellipse and the corresponding geodesic of length 5,000 nautical miles is about 10.5 meters. The lateral deviation between them may be as large as 3.7 nautical miles. A normal section connecting the two points will be closer to the geodesic than the great ellipse, unless the path touches the equator. On the WGS84 ellipsoid, the results for the great elliptic arc from New York, ϕ1 = 40.64130°, λ1 = -73.77810° to Paris, ϕ2 = 49.00970°, λ2= 2.54800° are: α1 = 53.596810°, α2 = 111.537138° and s12 = 5849159.753 (m) = 3158.293603 (nm). The corresponding numbers for the geodesic are: α1 = 53.511007°, α2 = 111.626714° and s12 = 5849157.543 (m) = 3158.292410 (nm). To illustrate the dependence on section type for the direct problem, let the departure azimuth and trip distance be those of the geodesic above, and use the great ellipse to define the direct problem. In this case the arrival point is ϕ2 = 49.073057°, λ2= 2.586154°, which is about 4.1 nm from the arrival point in Paris defined above. Of course using the departure azimuth and distance from the great ellipse indirect problem will properly locate the destination, ϕ2 = 49.00970°, λ2= 2.54800°, and the arrival azimuth α2 = 111.537138°.

Shows the geodesic deviation for various sections connecting Sydney to Bangkok

Normal sections

A normal section at P1 is determined by letting V0=u^1 (the surface normal at P1). Another normal section, known as the reciprocal normal section, results from using the surface normal at P2. Unless the two points are both on the same parallel or the same meridian, the reciprocal normal section will be a different path than the normal section. The above approach provides an alternative to that of others, such as Bowring.[7] The importance of normal sections in surveying as well as a discussion of the meaning of the term line in such a context is given in the paper by Deakin, Sheppard and Ross.[8] On the WGS84 ellipsoid, the results for the normal section from New York, ϕ1 = 40.64130°, λ1 = -73.77810° to Paris, ϕ2 = 49.00970°, λ2= 2.54800° are: α1 = 53.521396°, α2 = 111.612516° and s12 = 5849157.595 (m) = 3158.292438 (nm). The results for the reciprocal normal section from New York to Paris are: α1 = 53.509422°, α2 = 111.624483° and s12 = 5849157.545 (m) = 3158.292411 (nm). The maximum difference in length between a normal section and the corresponding geodesic of length 5,000 nautical miles is about 6.0 meters. The lateral deviation between them may be as large as 2.8 nautical miles. To illustrate the dependence on section type for the direct problem, let the departure azimuth and trip distance be those of the geodesic above, and use the surface normal at NY to define the direct problem. In this case the arrival point is ϕ2 = 49.017378°, λ2= 2.552626°, which is about 1/2 nm from the arrival point defined above. Of course, using the departure azimuth and distance from the normal section indirect problem will properly locate the destination in Paris. Presumably the direct problem is used when the arrival point is unknown, yet it is possible to use whatever vector V0 one pleases. For example, using the surface normal at Paris, u^2, results in an arrival point of ϕ2 = 49.007778°, λ2= 2.546842°, which is about 1/8 nm from the arrival point defined above. Using the surface normal at Reykjavik (while still using the departure azimuth and trip distance of the geodesic to Paris) will have you arriving about 347 nm from Paris, while the normal at Zürich brings you to within 5.5 nm. The search for a section that's closer to the geodesic led to the next two examples.

Shows how the geodesic deviation varies with azimuth for sections originating at 20° latitude.

The mean normal section

The mean normal section from P1 to P2 is determined by letting V0=0.5(u^1+u^2). This is a good approximation to the geodesic from P1 to P2 for aviation or sailing.The maximum difference in length between the mean normal section and the corresponding geodesic of length 5,000 nautical miles is about 0.5 meters. The lateral deviation between them is no more than about 0.8 nautical miles. For paths of length 1000 nautical miles the length error is less than a millimeter, and the worst case lateral deviation is about 4.4 meters. Continuing the example from New York to Paris on WGS84 gives the following results for the mean normal section: α1 = 53.515409°, α2 = 111.618500° and s12 = 5849157.560 (m) = 3158.292419 (nm).

Shows the geodesic deviation for various 5000nm normal sections from the equator.

The midpoint normal section

The midpoint normal section from P1 to P2 is determined by letting V0 = the surface normal at the midpoint of the geodesic from P1 to P2. This path is only slightly closer to the geodesic that the mean normal section. The maximum difference in length between a midpoint normal section and the corresponding geodesic of length 5,000 nautical miles is about 0.3 meters. The worst case lateral deviation between them is about 0.3 nautical miles. Finishing the example from New York to Paris on WGS84 gives the following results for the geodesic midpoint normal section: α1 = 53.506207°, α2 = 111.627697° and s12 = 5849157.545 (m) = 3158.292411 (nm).

Discussion

All of the section paths used in the charts to the right were defined using the indirect method above. In the third and fourth charts the terminal point was defined using the direct algorithm for the geodesic with the given distance and initial azimuth. On each of the geodesics some points were selected, the nearest point on the section plane was located by vector projection, and the distance between the two points computed. This distance is described as the lateral deviation from the geodesic, or briefly geodesic deviation, and is displayed in the charts on the right. The alternative of finding the corresponding point on the section path and computing geodesic distances would produce slightly different results. The first chart is typical of mid-latitude cases where the great ellipse is the outlier. The normal section associated with the point farthest from the equator is a good choice for these cases. The second example is longer and is typical of equator crossing cases, where the great ellipse beats the normal sections. However, the two normal sections deviate on opposite sides of the geodesic, making the mean normal section a good choice here. The third chart shows how the geodesic deviations vary with initial geodesic azimuth originating from 20 degrees north latitude. The worst case deviation for normal sections of 5000 nautical miles length is about 2.8 nm and occurs at initial geodesic azimuth of 132° from 18° north latitude (48° azimuth for south latitude). The fourth chart is what the third chart looks like when departing from the equator. On the equator there are more symmetries since sections at 90° and 270° azimuths are also geodesics. Consequently the fourth chart shows only 7 distinct lines out of the 24 with 15 degree spacing. Specifically, the lines at azimuths 15, 75, 195 and 255 coincide, as do the lines at 105, 165, 285, and 345 on the other side as the inner most (other than the geodesics). Next farthest coincident lines from the four geodesic lines are at azimuths 30, 60, 210, and 240 on one side and 120, 150, 300, and 330 on the other side. The outer most lines are at azimuths 45, and 225 on one side and 135 and 315 on the other. As the departure point moves north the lines at azimuths 90 and 270 are no longer geodesics, and other coincident lines separate and fan out until 18° latitude where the maximum deviation is attained. Beyond this point the deviations contract like a Japanese fan as the initial point proceeds north. So that by 84° latitude the maximum deviation for normal sections is about 0.25 nm. The midpoint normal section is (almost) always a good choice.

Intersections

Let two section planes be given: N^1R=d1, and N^2R=d2. Assuming that the two planes are not parallel, the line of intersection is on both planes. Hence orthogonal to both normals, i.e. in the direction of N3=N^1×N^2 (there is no reason to normalize N3). Since N^1 and N^2 are not collinear N^1, N^2, N3 is a basis for 3. Therefore, there exist constants C1 and C2 such that the line of intersection of the 2 planes is given by R=C1N^1+C2N^2+tN3, where t is an independent parameter. Since this line is on both section planes, it satisfies both: C1+C2(N^1N^2)=d1, and C1(N^1N^2)+C2=d2. Solving these equations for C1 and C2 gives C1[1(N^1N^2)2]=d1d2(N^1N^2), and C2[1(N^1N^2)2]=d2d1(N^1N^2). Define the "dihedral angle", ν, by cosν=N^1N^2. Then C1=(d1d2cosν)sin2ν , and C2=(d2d1cosν)sin2ν. On the intersection line we have R=R0+tN3, where R0=C1N^1+C2N^2. Hence: x=x0+tl3, y=y0+tm3, and z=z0+tn3, where x0=C1l1+C2l2, y0=C1m1+C2m2, and z0=C1n1+C2n2, N^i=(li,mi,ni), for i=1,2, and N3=(l3,m3,n3). To find the intersection of this line with the earth, plug the line equations into x2a2+y2a2+z2b2=1, to get At2+2Bt+C=0, where A=l32+m32+a2b2n32, B=x0l3+y0m3+a2b2z0n3, C=x02+y02+a2b2z02a2. Therefore, the line intersects the earth at t=B±B2ACA. If B2<AC, then there is no intersection. If B2=AC, then the line is tangent to the earth at t=B/A (i.e. the sections intersect at that single point). Observe that A0 since N^1 and N^2 are not collinear. Plugging t into R=R0+tN3, gives the points of intersection of the earth sections.

Example

Find where a section from New York to Paris, intersects the Greenwich meridian. The plane of the prime meridian may be described by N^=(0,1,0) and d=0. The results are as follows:

Intersections
Section Latitude
Great Ellipse 49.634970°
Normal 49.637377°
Mean Normal 49.637568°
Reciprocal 49.637759°
Midpoint 49.637862°

Extreme latitudes and longitudes

The maximum (or minimum) latitude is where the section ellipse intersections a parallel at a single point. To set up the problem, let N^1=(l,m,n), d1=d be the given section plane. The parallel is N^2=(0,0,1), d2=z0, where z0 is to be determined so that there is only one intersection point. Applying the intersection method above results in N3=N^1×N^2=(m,l,0), N^1N^2=n, C1=1p2(dnz0), and C2=1p2(z0nd), since 1n2=l2+m2=p2. The resulting linear equations become x=x0+tm, y=y0tl, and z=z0, where x0=C1l, y0=C1m, and z0 is to be determined. The resulting quadratic coefficients are A=m2+l2=p2, B=mx0ly0=lmC1lmC1=0, C=x02+y02+a2b2z02a2=p2C12+a2b2z02a2=1p2(dnz0)2+a2b2z02a2. Therefore the intersection will result in only one solution if B2=AC, but since B=0 and A>0[lower-alpha 2], the critical equation becomes C=0. This equation may be rearranged and put into the form Ez022Fz0+G=0, where E=a2b2p2+n2, F=nd, and G=d2a2p2. Therefore, z0=F±F2EGE provides the distance from the origin of the desired parallel planes. Plugging z0 into C1 gives the values for x0 and y0. Recall that t=B/A=0 so x=x0, y=y0 are the remaining coordinates of the intersections. The geographic coordinates may then be computed using the ECEF_to_Geo conversion. The same method may be applied to meridians to find extreme longitudes, but the results are not easy to interpret due to the modular nature of longitude. However, the results can always be verified using the following approach. The simpler approach is to compute the end points of the minor and major axes of the section ellipse using R=Rc±b*j^*, and R=Rc±a*i^*, and then converting to geographic coordinates. It may be worth mentioning here that the line of intersection of two planes consists of the set of fixed points, hence the rotation axis, of a coordinate rotation that maps one plane onto the other. For the New York to Paris example the results are:

Section Minor Axis Point 1 Minor Axis Point 2 Major Axis Point 1 Major Axis Point 2
Great Ellipse ϕ1 = 52.418061°, λ1 = -25.123079° ϕ2 = -52.418061°, λ2 = 154.876921° ϕ1 = 0.000000°, λ1 = 64.876921° ϕ2 = 0.000000°, λ2 = -115.123079°
Normal ϕ1 = 52.433790°, λ1 = -25.154863° ϕ2 = -52.739188°, λ2 = 154.845137° ϕ1 = -0.093365°, λ1 = 64.723898° ϕ2 = -0.093365°, λ2 = -115.033623°
Mean Normal ϕ1 = 52.435039°, λ1 = -25.157380° ϕ2 = -52.764681°, λ2 = 154.842620° ϕ1 = -0.100746°, λ1 = 64.711732° ϕ2 = -0.100746°, λ2 = -115.026491°
Reciprocal ϕ1 = 52.436288°, λ1 = -25.159896° ϕ2 = -52.790172°, λ2 = 154.840104° ϕ1 = -0.108122°, λ1 = 64.699565° ϕ2 = -0.108122°, λ2 = -115.019357°
Midpoint ϕ1 = 52.436959°, λ1 = -25.161247° ϕ2 = -52.803863°, λ2 = 154.838753° ϕ1 = -0.112082°, λ1 = 64.693029° ϕ2 = -0.112082°, λ2 = -115.015522°

See also

Notes

  1. Equatorial paths are geodesics up to a point. For example the geodesic connecting two points that are 180° apart on the equator is a meridian path over a pole, whereas the equator is still a great ellipse. In fact there are infinitely many great ellipses in this case, only two of which are geodesics. For short arcs the geodesic and great ellipse coincide. So at what point does it change? Rapp calculates the answer to be 179° 23' 38.18182".[6] At that point the geodesic starts to move off of the equator, and by 180° it is all the way to a pole.
  2. Otherwise the section is a parallel, so there is nothing to solve, since all latitudes are the same.

References

  1. Gilbertson, Charles (Spring 2012). "Earth Section Paths". Navigation. 59 (1): 1–7. doi:10.1002/navi.2.
  2. Rapp, R. H. (1991), Geometric geodesy, part I, Ohio State Univ., hdl:1811/24333
  3. Gan'shin, V. V. (1969) [1967].Geometry of the Earth Ellipsoid. Translated by Willis, J. M. St. Louis: Aeronautical Chart and Information Center. doi:10.5281/zenodo.32854. OCLC 493553. Translation from Russian of Геометрия земного эллипсоида (Moscow, 1967)
  4. Bowring, B.R. (1985). "The accuracy of geodetic latitude and height equations". Survey Review. 28 (218): 202–206. Bibcode:1985SurRv..28..202B. doi:10.1179/sre.1985.28.218.202.
  5. Bowring, B.R. (1984). "The Direct and Inverse Solutions for the Great Elliptic Line on the Reference Ellipsoid". Bulletin Géodésique. 58 (1): 101–108. Bibcode:1984BGeod..58..101B. doi:10.1007/BF02521760. S2CID 123161737.
  6. Rapp, R. H. (1993), Geometric geodesy, part II, Ohio State Univ., hdl:1811/24409
  7. Bowring, B.R. (1971). "The normal section -- forward and inverse formulae at any distance". Survey Review. XXI (161): 131–136. Bibcode:1971SurRv..21..131B. doi:10.1179/sre.1971.21.161.131.
  8. Deakin, R. E.; Sheppard, S. W.; Ross, R. (2011). "The Black-Allan Line Revisited" (PDF). 24th Victorian Regional Survey Conference, Shepparton, 1–3 April 2011. Archived from the original (PDF) on 5 January 2012. Retrieved 3 February 2012.

Further reading