Euler integral

From The Right Wiki
Jump to navigationJump to search

In mathematics, there are two types of Euler integral:[1]

  1. The Euler integral of the first kind is the beta function B(z1,z2)=01tz11(1t)z21dt=Γ(z1)Γ(z2)Γ(z1+z2)
  2. The Euler integral of the second kind is the gamma function[2] Γ(z)=0tz1etdt

For positive integers m and n, the two integrals can be expressed in terms of factorials and binomial coefficients: B(n,m)=(n1)!(m1)!(n+m1)!=n+mnm(n+mn)=(1n+1m)1(n+mn) Γ(n)=(n1)!

See also

References

  1. Jeffrey, Alan; Dai, Hui-Hui (2008). Handbook of mathematical formulas and integrals (4th ed.). Amsterdam: Elsevier Academic Press. pp. 234–235. ISBN 978-0-12-374288-9. OCLC 180880679.
  2. Jahnke, Hans Niels (2003). A history of analysis. History of mathematics. Providence (R.I.): American mathematical society. p. 116-117. ISBN 978-0-8218-2623-2.

External links and references