Balanced polygamma function

From The Right Wiki
Jump to navigationJump to search

In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.[1] It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.

Definition

The generalized polygamma function is defined as follows:

ψ(z,q)=ζ(z+1,q)+(ψ(z)+γ)ζ(z+1,q)Γ(z)

or alternatively,

ψ(z,q)=eγzz(eγzζ(z+1,q)Γ(z)),

where ψ(z) is the polygamma function and ζ(z,q), is the Hurwitz zeta function. The function is balanced, in that it satisfies the conditions

f(0)=f(1)and01f(x)dx=0.

Relations

Several special functions can be expressed in terms of generalized polygamma function.

ψ(x)=ψ(0,x)ψ(n)(x)=ψ(n,x)nΓ(x)=exp(ψ(1,x)+12ln2π)ζ(z,q)=Γ(1z)ln2(2zψ(z1,q+12)+2zψ(z1,q2)ψ(z1,q))ζ(1,x)=ψ(2,x)+x22x2+112Bn(q)=Γ(n+1)ln2(2n1ψ(n,q+12)+2n1ψ(n,q2)ψ(n,q))

where Bn(q) are the Bernoulli polynomials

K(z)=Aexp(ψ(2,z)+z2z2)

where K(z) is the K-function and A is the Glaisher constant.

Special values

The balanced polygamma function can be expressed in a closed form at certain points (where A is the Glaisher constant and G is the Catalan constant):

ψ(2,14)=18lnA+G4πψ(2,12)=12lnA124ln2ψ(3,12)=3ζ(3)32π2ψ(2,1)=lnAψ(3,1)=ζ(3)8π2ψ(2,2)=lnA1ψ(3,2)=ζ(3)8π234

References

  1. Espinosa, Olivier; Moll, Victor Hugo (Apr 2004). "A Generalized polygamma function" (PDF). Integral Transforms and Special Functions. 15 (2): 101–115. doi:10.1080/10652460310001600573.Open access icon