Hexicated 7-cubes
In seven-dimensional geometry, a hexicated 7-cube is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-cube. There are 32 hexications for the 7-cube, including all permutations of truncations, cantellations, runcinations, sterications, and pentellations. 20 are represented here, while 12 are more easily constructed from the 7-orthoplex. The simple hexicated 7-cube is also called an expanded 7-cube, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 7-cube. The highest form, the hexipentisteriruncicantitruncated 7-cube is more simply called a omnitruncated 7-cube with all of the nodes ringed. These polytope are among a family of 127 uniform 7-polytopes with B7 symmetry.
Hexicated 7-cube
Hexicated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
In seven-dimensional geometry, a hexicated 7-cube is a convex uniform 7-polytope, a hexication (6th order truncation) of the regular 7-cube, or alternately can be seen as an expansion operation.
Alternate names
- Small petated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t06.svg | File:7-cube t06 B6.svg | File:7-cube t06 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t06 B4.svg | File:7-cube t06 B3.svg | File:7-cube t06 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t06 A5.svg | File:7-cube t06 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexitruncated 7-cube
hexitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petitruncated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t016.svg | File:7-cube t016 B6.svg | File:7-cube t016 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t016 B4.svg | File:7-cube t016 B3.svg | File:7-cube t016 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t016 A5.svg | File:7-cube t016 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexicantellated 7-cube
Hexicantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petirhombated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t026.svg | File:7-cube t026 B6.svg | File:7-cube t026 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t026 B4.svg | File:7-cube t026 B3.svg | File:7-cube t026 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t026 A5.svg | File:7-cube t026 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexiruncinated 7-cube
Hexiruncinated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,3,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petiprismated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t036 B6.svg | File:7-cube t036 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t036 B4.svg | File:7-cube t036 B3.svg | File:7-cube t036 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t036 A5.svg | File:7-cube t036 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexicantitruncated 7-cube
Hexicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petigreatorhombated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0126.svg | File:7-cube t0126 B6.svg | File:7-cube t0126 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0126 B4.svg | File:7-cube t0126 B3.svg | File:7-cube t0126 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0126 A5.svg | File:7-cube t0126 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexiruncitruncated 7-cube
Hexiruncitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petiprismatotruncated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0136.svg | File:7-cube t0136 B6.svg | File:7-cube t0136 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0136 B4.svg | File:7-cube t0136 B3.svg | File:7-cube t0136 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0136 A5.svg | File:7-cube t0136 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexiruncicantellated 7-cube
Hexiruncicantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
In seven-dimensional geometry, a hexiruncicantellated 7-cube is a uniform 7-polytope.
Alternate names
- Petiprismatorhombated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0236.svg | File:7-cube t0236 B6.svg | File:7-cube t0236 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0236 B4.svg | File:7-cube t0236 B3.svg | File:7-cube t0236 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0236 A5.svg | File:7-cube t0236 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexisteritruncated 7-cube
hexisteritruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Peticellitruncated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0146.svg | File:7-cube t0146 B6.svg | File:7-cube t0146 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0146 B4.svg | File:7-cube t0146 B3.svg | File:7-cube t0146 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0146 A5.svg | File:7-cube t0146 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexistericantellated 7-cube
hexistericantellated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Peticellirhombihepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0246.svg | File:7-cube t0246 B6.svg | File:7-cube t0246 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0246 B4.svg | File:7-cube t0246 B3.svg | File:7-cube t0246 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0246 A5.svg | File:7-cube t0246 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexipentitruncated 7-cube
Hexipentitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,5,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petiteritruncated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t0156.svg | File:7-cube t0156 B6.svg | File:7-cube t0156 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0156 B4.svg | File:7-cube t0156 B3.svg | File:7-cube t0156 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0156 A5.svg | File:7-cube t0156 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexiruncicantitruncated 7-cube
Hexiruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petigreatoprismated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t01236.svg | File:7-cube t01236 B6.svg | File:7-cube t01236 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t01236 B4.svg | File:7-cube t01236 B3.svg | File:7-cube t01236 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | too complex | too complex | |
Dihedral symmetry | [6] | [4] |
Hexistericantitruncated 7-cube
Hexistericantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Peticelligreatorhombated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t01246 B6.svg | File:7-cube t01246 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t01246 B4.svg | File:7-cube t01246 B3.svg | File:7-cube t01246 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t01246 A5.svg | File:7-cube t01246 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexisteriruncitruncated 7-cube
Hexisteriruncitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,3,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Peticelliprismatotruncated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t01346 B6.svg | File:7-cube t01346 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t01346 B4.svg | File:7-cube t01346 B3.svg | File:7-cube t01346 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t01346 A5.svg | File:7-cube t01346 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexisteriruncicantellated 7-cube
Hexisteriruncitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,2,3,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Peticelliprismatorhombihepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t02346 B6.svg | File:7-cube t02346 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t02346 B4.svg | File:7-cube t02346 B3.svg | File:7-cube t02346 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t02346 A5.svg | File:7-cube t02346 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexipenticantitruncated 7-cube
hexipenticantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,5,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petiterigreatorhombated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | File:7-cube t01256.svg | File:7-cube t01256 B6.svg | File:7-cube t01256 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t01256 B4.svg | File:7-cube t01256 B3.svg | File:7-cube t01256 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t01256 A5.svg | File:7-cube t01256 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexipentiruncitruncated 7-cube
Hexisteriruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Great petacellated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t012346 B6.svg | File:7-cube t012346 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t012346 B4.svg | File:7-cube t012346 B3.svg | File:7-cube t012346 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t012346 A5.svg | File:7-cube t012346 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexisteriruncicantitruncated 7-cube
Hexisteriruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Great petacellated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t012346 B6.svg | File:7-cube t012346 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t012346 B4.svg | File:7-cube t012346 B3.svg | File:7-cube t012346 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t012346 A5.svg | File:7-cube t012346 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexipentiruncicantitruncated 7-cube
Hexipentiruncicantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,5,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petiterigreatoprismated hepteract (acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t012356 B6.svg | File:7-cube t012356 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t012356 B4.svg | File:7-cube t012356 B3.svg | File:7-cube t012356 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t012356 A5.svg | File:7-cube t012356 A3.svg | |
Dihedral symmetry | [6] | [4] |
Hexipentistericantitruncated 7-cube
Hexipentistericantitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,4,5,6{4,35} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
Alternate names
- Petitericelligreatorhombihepteract (acronym: putcagroh) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t012456 B6.svg | File:7-cube t012456 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t012456 B4.svg | File:7-cube t012456 B3.svg | File:7-cube t012456 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t012456 A5.svg | File:7-cube t012456 A3.svg | |
Dihedral symmetry | [6] | [4] |
Omnitruncated 7-cube
Omnitruncated 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | t0,1,2,3,4,5,6{36} |
Coxeter-Dynkin diagrams | File:CDel node 1.pngFile:CDel 4.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.png |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | B7, [4,35] |
Properties | convex |
The omnitruncated 7-cube is the largest uniform 7-polytope in the B7 symmetry of the regular 7-cube. It can also be called the hexipentisteriruncicantitruncated 7-cube which is the long name for the omnitruncation for 7 dimensions, with all reflective mirrors active.
Alternate names
- Great petated hepteract (Acronym: ) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | too complex | File:7-cube t0123456 B6.svg | File:7-cube t0123456 B5.svg |
Dihedral symmetry | [14] | [12] | [10] |
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | File:7-cube t0123456 B4.svg | File:7-cube t0123456 B3.svg | File:7-cube t0123456 B2.svg |
Dihedral symmetry | [8] | [6] | [4] |
Coxeter plane | A5 | A3 | |
Graph | File:7-cube t0123456 A5.svg | File:7-cube t0123456 A3.svg | |
Dihedral symmetry | [6] | [4] |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, PhD (1966)
- Klitzing, Richard. "7D uniform polytopes (polyexa)". x3o3o3o3o3o4x - , x3x3o3o3o3o3x- , x3o3o3x3o3o4x - , x3x3x3o3o3o4x - , x3x3o3x3o3o4x - , x3o3x3x3o3o4x - , x3o3x3o3o3x4x - , x3o3x3o3x3o4x - , x3x3o3o3o3x4x - , x3x3x3x3o3o4x - , x3x3x3o3x3o4x - , x3x3o3x3x3o4x - , x3o3x3x3x3o4x - , x3x3x3oxo3x4x - , x3x3x3x3x3o4x - , x3x3x3o3x3x4x - , x3x3o3x3x3x4x - , x3x3x3x3x3x4x -