Jacobi theta functions (notational variations)

From The Right Wiki
Jump to navigationJump to search

There are a number of notational systems for the Jacobi theta functions. The notations given in the Wikipedia article define the original function

ϑ00(z;τ)=n=exp(πin2τ+2πinz)

which is equivalent to

ϑ00(w,q)=n=qn2w2n

where q=eπiτ and w=eπiz. However, a similar notation is defined somewhat differently in Whittaker and Watson, p. 487:

ϑ0,0(x)=n=qn2exp(2πinx/a)

This notation is attributed to "Hermite, H.J.S. Smith and some other mathematicians". They also define

ϑ1,1(x)=n=(1)nq(n+1/2)2exp(πi(2n+1)x/a)

This is a factor of i off from the definition of ϑ11 as defined in the Wikipedia article. These definitions can be made at least proportional by x = za, but other definitions cannot. Whittaker and Watson, Abramowitz and Stegun, and Gradshteyn and Ryzhik all follow Tannery and Molk, in which

ϑ1(z)=in=(1)nq(n+1/2)2exp((2n+1)iz)
ϑ2(z)=n=q(n+1/2)2exp((2n+1)iz)
ϑ3(z)=n=qn2exp(2niz)
ϑ4(z)=n=(1)nqn2exp(2niz)

Note that there is no factor of π in the argument as in the previous definitions. Whittaker and Watson refer to still other definitions of ϑj. The warning in Abramowitz and Stegun, "There is a bewildering variety of notations...in consulting books caution should be exercised," may be viewed as an understatement. In any expression, an occurrence of ϑ(z) should not be assumed to have any particular definition. It is incumbent upon the author to state what definition of ϑ(z) is intended.

References

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 16.27ff.". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich (1980). "8.18.". In Jeffrey, Alan (ed.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (4th corrected and enlarged ed.). Academic Press, Inc. ISBN 0-12-294760-6. LCCN 79027143.
  • E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge University Press, 1927. (See chapter XXI for the history of Jacobi's θ functions)