Legendre transform (integral transform)

From The Right Wiki
Jump to navigationJump to search

In mathematics, Legendre transform is an integral transform named after the mathematician Adrien-Marie Legendre, which uses Legendre polynomials Pn(x) as kernels of the transform. Legendre transform is a special case of Jacobi transform. The Legendre transform of a function f(x) is[1][2][3]

𝒥n{f(x)}=f~(n)=11Pn(x)f(x)dx

The inverse Legendre transform is given by

𝒥n1{f~(n)}=f(x)=n=02n+12f~(n)Pn(x)

Associated Legendre transform

Associated Legendre transform is defined as

𝒥n,m{f(x)}=f~(n,m)=11(1x2)m/2Pnm(x)f(x)dx

The inverse Legendre transform is given by

𝒥n,m1{f~(n,m)}=f(x)=n=02n+12(nm)!(n+m)!f~(n,m)(1x2)m/2Pnm(x)

Some Legendre transform pairs

f(x) f~(n)
xn 2n+1(n!)2(2n+1)!
eax 2πaIn+1/2(a)
eiax 2πainJn+1/2(a)
xf(x) 12n+1[(n+1)f~(n+1)+nf~(n1)]
(1x2)1/2 πPn2(0)
[2(ax)]1 Qn(a)
(12ax+a2)1/2,|a|<1 2an(2n+1)1
(12ax+a2)3/2,|a|<1 2an(1a2)1
0atb1dt(12xt+t2)1/2,|a|<1b>0 2an+b(2n+1)(n+b)
ddx[(1x2)ddx]f(x) n(n+1)f~(n)
{ddx[(1x2)ddx]}kf(x) (1)knk(n+1)kf~(n)
f(x)4ddx[(1x2)ddx]f(x) (n+12)2f~(n)
ln(1x) {2(ln21),n=02n(n+1),n>0
f(x)*g(x) f~(n)g~(n)
1xf(t)dt {f~(0)f~(1),n=0f~(n1)f~(n+1)2n+1,n>1
ddxg(x),g(x)=1xf(t)dt g(1)11g(x)ddxPn(x)dx

References

  1. Debnath, Lokenath; Dambaru Bhatta (2007). Integral transforms and their applications (2nd ed.). Boca Raton: Chapman & Hall/CRC. ISBN 9781482223576.
  2. Churchill, R. V. (1954). "The Operational Calculus of Legendre Transforms". Journal of Mathematics and Physics. 33 (1–4): 165–178. doi:10.1002/sapm1954331165. hdl:2027.42/113680.
  3. Churchill, R. V., and C. L. Dolph. "Inverse transforms of products of Legendre transforms." Proceedings of the American Mathematical Society 5.1 (1954): 93–100.