Atlas (topology)
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
Charts
The definition of an atlas depends on the notion of a chart. A chart for a topological space M is a homeomorphism from an open subset U of M to an open subset of a Euclidean space. The chart is traditionally recorded as the ordered pair .[1] When a coordinate system is chosen in the Euclidean space, this defines coordinates on : the coordinates of a point of are defined as the coordinates of The pair formed by a chart and such a coordinate system is called a local coordinate system, coordinate chart, coordinate patch, coordinate map, or local frame.
Formal definition of atlas
An atlas for a topological space is an indexed family of charts on which covers (that is, ). If for some fixed n, the image of each chart is an open subset of n-dimensional Euclidean space, then is said to be an n-dimensional manifold. The plural of atlas is atlases, although some authors use atlantes.[2][3] An atlas on an -dimensional manifold is called an adequate atlas if the following conditions hold:[clarification needed]
- The image of each chart is either or , where is the closed half-space,[clarification needed]
- is a locally finite open cover of , and
- , where is the open ball of radius 1 centered at the origin.
Every second-countable manifold admits an adequate atlas.[4] Moreover, if is an open covering of the second-countable manifold , then there is an adequate atlas on , such that is a refinement of .[4]
Transition maps
A transition map provides a way of comparing two charts of an atlas. To make this comparison, we consider the composition of one chart with the inverse of the other. This composition is not well-defined unless we restrict both charts to the intersection of their domains of definition. (For example, if we have a chart of Europe and a chart of Russia, then we can compare these two charts on their overlap, namely the European part of Russia.) To be more precise, suppose that and are two charts for a manifold M such that is non-empty. The transition map is the map defined by Note that since and are both homeomorphisms, the transition map is also a homeomorphism.
More structure
One often desires more structure on a manifold than simply the topological structure. For example, if one would like an unambiguous notion of differentiation of functions on a manifold, then it is necessary to construct an atlas whose transition functions are differentiable. Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives. If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth. Alternatively, one could require that the transition maps have only k continuous derivatives in which case the atlas is said to be . Very generally, if each transition function belongs to a pseudogroup of homeomorphisms of Euclidean space, then the atlas is called a -atlas. If the transition maps between charts of an atlas preserve a local trivialization, then the atlas defines the structure of a fibre bundle.
See also
References
- ↑ Jänich, Klaus (2005). Vektoranalysis (in German) (5 ed.). Springer. p. 1. ISBN 3-540-23741-0.
{{cite book}}
: CS1 maint: unrecognized language (link) - ↑ Jost, Jürgen (11 November 2013). Riemannian Geometry and Geometric Analysis. Springer Science & Business Media. ISBN 9783662223857. Retrieved 16 April 2018 – via Google Books.
- ↑ Giaquinta, Mariano; Hildebrandt, Stefan (9 March 2013). Calculus of Variations II. Springer Science & Business Media. ISBN 9783662062012. Retrieved 16 April 2018 – via Google Books.
- ↑ 4.0 4.1 Kosinski, Antoni (2007). Differential manifolds. Mineola, N.Y: Dover Publications. ISBN 978-0-486-46244-8. OCLC 853621933.
- Dieudonné, Jean (1972). "XVI. Differential manifolds". Treatise on Analysis. Pure and Applied Mathematics. Vol. III. Translated by Ian G. Macdonald. Academic Press. MR 0350769.
- Lee, John M. (2006). Introduction to Smooth Manifolds. Springer-Verlag. ISBN 978-0-387-95448-6.
- Loomis, Lynn; Sternberg, Shlomo (2014). "Differentiable manifolds". Advanced Calculus (Revised ed.). World Scientific. pp. 364–372. ISBN 978-981-4583-93-0. MR 3222280.
- Sepanski, Mark R. (2007). Compact Lie Groups. Springer-Verlag. ISBN 978-0-387-30263-8.
- Husemoller, D (1994), Fibre bundles, Springer, Chapter 5 "Local coordinate description of fibre bundles".
External links
- Atlas by Rowland, Todd