Bessel function

From The Right Wiki
(Redirected from Modified Bessel functions)
Jump to navigationJump to search

File:Vibrating drum Bessel function.gif
Bessel functions describe the radial part of vibrations of a circular membrane.

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation x2d2ydx2+xdydx+(x2α2)y=0 for an arbitrary complex number α, which represents the order of the Bessel function. Although α and α produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of α. The most important cases are when α is an integer or half-integer. Bessel functions for integer α are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer α are obtained when solving the Helmholtz equation in spherical coordinates.

Applications of Bessel functions

Bessel's equation arises when finding separable solutions to Laplace's equation and the Helmholtz equation in cylindrical or spherical coordinates. Bessel functions are therefore especially important for many problems of wave propagation and static potentials. In solving problems in cylindrical coordinate systems, one obtains Bessel functions of integer order (α = n); in spherical problems, one obtains half-integer orders (α = n + 1/2). For example:

Bessel functions also appear in other problems, such as signal processing (e.g., see FM audio synthesis, Kaiser window, or Bessel filter).

Definitions

Because this is a linear differential equation, solutions can be scaled to any amplitude. The amplitudes chosen for the functions originate from the early work in which the functions appeared as solutions to definite integrals rather than solutions to differential equations. Because the differential equation is second-order, there must be two linearly independent solutions. Depending upon the circumstances, however, various formulations of these solutions are convenient. Different variations are summarized in the table below and described in the following sections.

Type First kind Second kind
Bessel functions Jα Yα
Modified Bessel functions Iα Kα
Hankel functions H(1)
α
= Jα + iYα
H(2)
α
= JαiYα
Spherical Bessel functions jn yn
Modified spherical Bessel functions in kn
Spherical Hankel functions h(1)
n
= jn + iyn
h(2)
n
= jniyn

Bessel functions of the second kind and the spherical Bessel functions of the second kind are sometimes denoted by Nn and nn, respectively, rather than Yn and yn.[2][3]

Bessel functions of the first kind: Jα

File:BesselJ.png
Plot of Bessel function of the first kind, Jα(x), for integer orders α=0,1,2.
File:BesselJ(.5,z).png
Plot of Bessel function of the first kind Jα(z) with α=0.5 in the plane from 22i to 2+2i.

Bessel functions of the first kind, denoted as Jα(x), are solutions of Bessel's differential equation. For integer or positive α, Bessel functions of the first kind are finite at the origin (x = 0); while for negative non-integer α, Bessel functions of the first kind diverge as x approaches zero. It is possible to define the function by xα times a Maclaurin series (note that α need not be an integer, and non-integer powers are not permitted in a Taylor series), which can be found by applying the Frobenius method to Bessel's equation:[4] Jα(x)=m=0(1)mm!Γ(m+α+1)(x2)2m+α, where Γ(z) is the gamma function, a shifted generalization of the factorial function to non-integer values. Some earlier authors define the Bessel function of the first kind differently, essentially without the division by 2 in x/2;[5] this definition is not used in this article. The Bessel function of the first kind is an entire function if α is an integer, otherwise it is a multivalued function with singularity at zero. The graphs of Bessel functions look roughly like oscillating sine or cosine functions that decay proportionally to x1/2 (see also their asymptotic forms below), although their roots are not generally periodic, except asymptotically for large x. (The series indicates that J1(x) is the derivative of J0(x), much like −sin x is the derivative of cos x; more generally, the derivative of Jn(x) can be expressed in terms of Jn ± 1(x) by the identities below.) For non-integer α, the functions Jα(x) and Jα(x) are linearly independent, and are therefore the two solutions of the differential equation. On the other hand, for integer order n, the following relationship is valid (the gamma function has simple poles at each of the non-positive integers):[6] Jn(x)=(1)nJn(x). This means that the two solutions are no longer linearly independent. In this case, the second linearly independent solution is then found to be the Bessel function of the second kind, as discussed below.

Bessel's integrals

Another definition of the Bessel function, for integer values of n, is possible using an integral representation:[7] Jn(x)=1π0πcos(nτxsinτ)dτ=1πRe(0πei(nτxsinτ)dτ), which is also called Hansen-Bessel formula.[8] This was the approach that Bessel used,[9] and from this definition he derived several properties of the function. The definition may be extended to non-integer orders by one of Schläfli's integrals, for Re(x) > 0:[7][10][11][12][13] Jα(x)=1π0πcos(ατxsinτ)dτsin(απ)π0exsinhtαtdt.

Relation to hypergeometric series

The Bessel functions can be expressed in terms of the generalized hypergeometric series as[14] Jα(x)=(x2)αΓ(α+1)0F1(α+1;x24). This expression is related to the development of Bessel functions in terms of the Bessel–Clifford function.

Relation to Laguerre polynomials

In terms of the Laguerre polynomials Lk and arbitrarily chosen parameter t, the Bessel function can be expressed as[15] Jα(x)(x2)α=etΓ(α+1)k=0Lk(α)(x24t)(k+αk)tkk!.

Bessel functions of the second kind: Yα

File:Besselyn.png
Plot of Bessel function of the second kind, Yα(x), for integer orders α=0,1,2

The Bessel functions of the second kind, denoted by Yα(x), occasionally denoted instead by Nα(x), are solutions of the Bessel differential equation that have a singularity at the origin (x = 0) and are multivalued. These are sometimes called Weber functions, as they were introduced by H. M. Weber (1873), and also Neumann functions after Carl Neumann.[16] For non-integer α, Yα(x) is related to Jα(x) by Yα(x)=Jα(x)cos(απ)Jα(x)sin(απ). In the case of integer order n, the function is defined by taking the limit as a non-integer α tends to n: Yn(x)=limαnYα(x). If n is a nonnegative integer, we have the series[17] Yn(z)=(z2)nπk=0n1(nk1)!k!(z24)k+2πJn(z)lnz2(z2)nπk=0(ψ(k+1)+ψ(n+k+1))(z24)kk!(n+k)! where ψ(z) is the digamma function, the logarithmic derivative of the gamma function.[3] There is also a corresponding integral formula (for Re(x) > 0):[18] Yn(x)=1π0πsin(xsinθnθ)dθ1π0(ent+(1)nent)exsinhtdt. In the case where n = 0: (with γ being Euler's constant)Y0(x)=4π2012πcos(xcosθ)(γ+ln(2xsin2θ))dθ.

File:Besselyhalf.png
Plot of the Bessel function of the second kind Yα(z) with α=0.5 in the complex plane from 22i to 2+2i.

Yα(x) is necessary as the second linearly independent solution of the Bessel's equation when α is an integer. But Yα(x) has more meaning than that. It can be considered as a "natural" partner of Jα(x). See also the subsection on Hankel functions below. When α is an integer, moreover, as was similarly the case for the functions of the first kind, the following relationship is valid: Yn(x)=(1)nYn(x). Both Jα(x) and Yα(x) are holomorphic functions of x on the complex plane cut along the negative real axis. When α is an integer, the Bessel functions J are entire functions of x. If x is held fixed at a non-zero value, then the Bessel functions are entire functions of α. The Bessel functions of the second kind when α is an integer is an example of the second kind of solution in Fuchs's theorem.

Hankel functions: H(1)
α
, H(2)
α

File:Plot of the Hankel function of the first kind H n^(1)(z) with n=-0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the Hankel function of the first kind H(1)
n
(x)
with n = −0.5 in the complex plane from −2 − 2i to 2 + 2i
File:Plot of the Hankel function of the second kind H n^(2)(z) with n=-0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the Hankel function of the second kind H(2)
n
(x)
with n = −0.5 in the complex plane from −2 − 2i to 2 + 2i

Another important formulation of the two linearly independent solutions to Bessel's equation are the Hankel functions of the first and second kind, H(1)
α
(x)
and H(2)
α
(x)
, defined as[19] Hα(1)(x)=Jα(x)+iYα(x),Hα(2)(x)=Jα(x)iYα(x), where i is the imaginary unit. These linear combinations are also known as Bessel functions of the third kind; they are two linearly independent solutions of Bessel's differential equation. They are named after Hermann Hankel. These forms of linear combination satisfy numerous simple-looking properties, like asymptotic formulae or integral representations. Here, "simple" means an appearance of a factor of the form ei f(x). For real x>0 where Jα(x), Yα(x) are real-valued, the Bessel functions of the first and second kind are the real and imaginary parts, respectively, of the first Hankel function and the real and negative imaginary parts of the second Hankel function. Thus, the above formulae are analogs of Euler's formula, substituting H(1)
α
(x)
, H(2)
α
(x)
for e±ix and Jα(x), Yα(x) for cos(x), sin(x), as explicitly shown in the asymptotic expansion. The Hankel functions are used to express outward- and inward-propagating cylindrical-wave solutions of the cylindrical wave equation, respectively (or vice versa, depending on the sign convention for the frequency). Using the previous relationships, they can be expressed as Hα(1)(x)=Jα(x)eαπiJα(x)isinαπ,Hα(2)(x)=Jα(x)eαπiJα(x)isinαπ. If α is an integer, the limit has to be calculated. The following relationships are valid, whether α is an integer or not:[20] Hα(1)(x)=eαπiHα(1)(x),Hα(2)(x)=eαπiHα(2)(x). In particular, if α = m + 1/2 with m a nonnegative integer, the above relations imply directly that J(m+12)(x)=(1)m+1Ym+12(x),Y(m+12)(x)=(1)mJm+12(x). These are useful in developing the spherical Bessel functions (see below). The Hankel functions admit the following integral representations for Re(x) > 0:[21] Hα(1)(x)=1πi++πiexsinhtαtdt,Hα(2)(x)=1πi+πiexsinhtαtdt, where the integration limits indicate integration along a contour that can be chosen as follows: from −∞ to 0 along the negative real axis, from 0 to ±πi along the imaginary axis, and from ±πi to +∞ ± πi along a contour parallel to the real axis.[18]

Modified Bessel functions: Iα, Kα

The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the Bessel equation are called the modified Bessel functions (or occasionally the hyperbolic Bessel functions) of the first and second kind and are defined as[22] Iα(x)=iαJα(ix)=m=01m!Γ(m+α+1)(x2)2m+α,Kα(x)=π2Iα(x)Iα(x)sinαπ, when α is not an integer; when α is an integer, then the limit is used. These are chosen to be real-valued for real and positive arguments x. The series expansion for Iα(x) is thus similar to that for Jα(x), but without the alternating (−1)m factor. Kα can be expressed in terms of Hankel functions: Kα(x)={π2iα+1Hα(1)(ix)π<argxπ2π2(i)α+1Hα(2)(ix)π2<argxπ Using these two formulae the result to Jα2(z)+Yα2(z), commonly known as Nicholson's integral or Nicholson's formula, can be obtained to give the following Jα2(x)+Yα2(x)=8π20cosh(2αt)K0(2xsinht)dt, given that the condition Re(x) > 0 is met. It can also be shown that Jα2(x)+Yα2(x)=8cos(απ)π20K2α(2xsinht)dt, only when |Re(α)| < 1/2 and Re(x) ≥ 0 but not when x = 0.[23] We can express the first and second Bessel functions in terms of the modified Bessel functions (these are valid if π < arg zπ/2):[24] Jα(iz)=eαπi2Iα(z),Yα(iz)=e(α+1)πi2Iα(z)2πeαπi2Kα(z). Iα(x) and Kα(x) are the two linearly independent solutions to the modified Bessel's equation:[25] x2d2ydx2+xdydx(x2+α2)y=0. Unlike the ordinary Bessel functions, which are oscillating as functions of a real argument, Iα and Kα are exponentially growing and decaying functions respectively. Like the ordinary Bessel function Jα, the function Iα goes to zero at x = 0 for α > 0 and is finite at x = 0 for α = 0. Analogously, Kα diverges at x = 0 with the singularity being of logarithmic type for K0, and 1/2Γ(|α|)(2/x)|α| otherwise.[26]

File:BesselI Functions (1st Kind, n=0,1,2,3).svg
Modified Bessel functions of the first kind, Iα(x), for α = 0, 1, 2, 3
File:BesselK Functions (n=0,1,2,3).svg
Modified Bessel functions of the second kind, Kα(x), for α = 0, 1, 2, 3

Two integral formulas for the modified Bessel functions are (for Re(x) > 0):[27] Iα(x)=1π0πexcosθcosαθdθsinαππ0excoshtαtdt,Kα(x)=0excoshtcoshαtdt. Bessel functions can be described as Fourier transforms of powers of quadratic functions. For example (for Re(ω) > 0): 2K0(ω)=eiωtt2+1dt. It can be proven by showing equality to the above integral definition for K0. This is done by integrating a closed curve in the first quadrant of the complex plane. Modified Bessel functions of the second kind may be represented with Bassett's integral [28] Kn(xz)=Γ(n+12)(2z)nπxn0cos(xt)dt(t2+z2)n+12. Modified Bessel functions K1/3 and K2/3 can be represented in terms of rapidly convergent integrals[29] K13(ξ)=30exp(ξ(1+4x23)1+x23)dx,K23(ξ)=1303+2x21+x23exp(ξ(1+4x23)1+x23)dx. The modified Bessel function K12(ξ)=(2ξ/π)1/2exp(ξ) is useful to represent the Laplace distribution as an Exponential-scale mixture of normal distributions. The modified Bessel function of the second kind has also been called by the following names (now rare):

Spherical Bessel functions: jn, yn

File:Plot of the spherical Bessel function of the first kind j n(z) with n=0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the spherical Bessel function of the first kind jn(z) with n = 0.5 in the complex plane from −2 − 2i to 2 + 2i with colors created with Mathematica 13.1 function ComplexPlot3D
File:Plot of the spherical Bessel function of the second kind y n(z) with n=0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the spherical Bessel function of the second kind yn(z) with n = 0.5 in the complex plane from −2 − 2i to 2 + 2i with colors created with Mathematica 13.1 function ComplexPlot3D
File:Spherical Bessel j Functions (n=0,1,2).svg
Spherical Bessel functions of the first kind, jn(x), for n = 0, 1, 2
File:Spherical Bessel y Functions (n=0,1,2).svg
Spherical Bessel functions of the second kind, yn(x), for n = 0, 1, 2

When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form x2d2ydx2+2xdydx+(x2n(n+1))y=0. The two linearly independent solutions to this equation are called the spherical Bessel functions jn and yn, and are related to the ordinary Bessel functions Jn and Yn by[31] jn(x)=π2xJn+12(x),yn(x)=π2xYn+12(x)=(1)n+1π2xJn12(x). yn is also denoted nn or ηn; some authors call these functions the spherical Neumann functions. From the relations to the ordinary Bessel functions it is directly seen that: jn(x)=(1)nyn1(x)yn(x)=(1)n+1jn1(x) The spherical Bessel functions can also be written as (Rayleigh's formulas)[32] jn(x)=(x)n(1xddx)nsinxx,yn(x)=(x)n(1xddx)ncosxx. The zeroth spherical Bessel function j0(x) is also known as the (unnormalized) sinc function. The first few spherical Bessel functions are:[33] j0(x)=sinxx.j1(x)=sinxx2cosxx,j2(x)=(3x21)sinxx3cosxx2,j3(x)=(15x36x)sinxx(15x21)cosxx and[34] y0(x)=j1(x)=cosxx,y1(x)=j2(x)=cosxx2sinxx,y2(x)=j3(x)=(3x2+1)cosxx3sinxx2,y3(x)=j4(x)=(15x3+6x)cosxx(15x21)sinxx. The first few non-zero roots of the first few spherical Bessel functions are:

Non-zero Roots of the Spherical Bessel Function (first kind)
Order Root 1 Root 2 Root 3 Root 4 Root 5
j0 3.141593 6.283185 9.424778 12.566371 15.707963
j1 4.493409 7.725252 10.904122 14.066194 17.220755
j2 5.763459 9.095011 12.322941 15.514603 18.689036
j3 6.987932 10.417119 13.698023 16.923621 20.121806
j4 8.182561 11.704907 15.039665 18.301256 21.525418
Non-zero Roots of the Spherical Bessel Function (second kind)
Order Root 1 Root 2 Root 3 Root 4 Root 5
y0 1.570796 4.712389 7.853982 10.995574 14.137167
y1 2.798386 6.121250 9.317866 12.486454 15.644128
y2 3.959528 7.451610 10.715647 13.921686 17.103359
y3 5.088498 8.733710 12.067544 15.315390 18.525210
y4 6.197831 9.982466 13.385287 16.676625 19.916796

Generating function

The spherical Bessel functions have the generating functions[35] 1zcos(z22zt)=n=0tnn!jn1(z),1zsin(z22zt)=n=0tnn!yn1(z).

Finite series expansions

In contrast to the whole integer Bessel functions Jn(x), Yn(x), the spherical Bessel functions jn(x), yn(x) have a finite series expression:[36] jn(x)=π2xJn+12(x)==12x[eixr=0nirn1(n+r)!r!(nr)!(2x)r+eixr=0n(i)rn1(n+r)!r!(nr)!(2x)r]=1x[sin(xnπ2)r=0[n2](1)r(n+2r)!(2r)!(n2r)!(2x)2r+cos(xnπ2)r=0[n12](1)r(n+2r+1)!(2r+1)!(n2r1)!(2x)2r+1]yn(x)=(1)n+1jn1(x)=(1)n+1π2xJ(n+12)(x)==(1)n+12x[eixr=0nir+n(n+r)!r!(nr)!(2x)r+eixr=0n(i)r+n(n+r)!r!(nr)!(2x)r]==(1)n+1x[cos(xnπ2)r=0[n2](1)r(n+2r)!(2r)!(n2r)!(2x)2r+sin(xnπ2)r=0[n12](1)r(n+2r+1)!(2r+1)!(n2r1)!(2x)2r+1]

Differential relations

In the following, fn is any of jn, yn, h(1)
n
, h(2)
n
for n = 0, ±1, ±2, ...[37] (1zddz)m(zn+1fn(z))=znm+1fnm(z),(1zddz)m(znfn(z))=(1)mznmfn+m(z).

Spherical Hankel functions: h(1)
n
, h(2)
n

File:Plot of the spherical Hankel function of the first kind h n^(1)(z) with n=-0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the spherical Hankel function of the first kind h(1)
n
(x)
with n = -0.5 in the complex plane from −2 − 2i to 2 + 2i
File:Plot of the spherical Hankel function of the second kind h n^(2)(z) with n=-0.5 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg
Plot of the spherical Hankel function of the second kind h(2)
n
(x)
with n = −0.5 in the complex plane from −2 − 2i to 2 + 2i

There are also spherical analogues of the Hankel functions: hn(1)(x)=jn(x)+iyn(x),hn(2)(x)=jn(x)iyn(x). In fact, there are simple closed-form expressions for the Bessel functions of half-integer order in terms of the standard trigonometric functions, and therefore for the spherical Bessel functions. In particular, for non-negative integers n: hn(1)(x)=(i)n+1eixxm=0nimm!(2x)m(n+m)!(nm)!, and h(2)
n
is the complex-conjugate of this (for real x). It follows, for example, that j0(x) = sin x/x and y0(x) = −cos x/x, and so on. The spherical Hankel functions appear in problems involving spherical wave propagation, for example in the multipole expansion of the electromagnetic field.

Riccati–Bessel functions: Sn, Cn, ξn, ζn

Riccati–Bessel functions only slightly differ from spherical Bessel functions: Sn(x)=xjn(x)=πx2Jn+12(x)Cn(x)=xyn(x)=πx2Yn+12(x)ξn(x)=xhn(1)(x)=πx2Hn+12(1)(x)=Sn(x)iCn(x)ζn(x)=xhn(2)(x)=πx2Hn+12(2)(x)=Sn(x)+iCn(x)

Riccati–Bessel functions Sn complex plot from -2-2i to 2+2i
Riccati–Bessel functions Sn complex plot from −2 − 2i to 2 + 2i

They satisfy the differential equation x2d2ydx2+(x2n(n+1))y=0. For example, this kind of differential equation appears in quantum mechanics while solving the radial component of the Schrödinger's equation with hypothetical cylindrical infinite potential barrier.[38] This differential equation, and the Riccati–Bessel solutions, also arises in the problem of scattering of electromagnetic waves by a sphere, known as Mie scattering after the first published solution by Mie (1908). See e.g., Du (2004)[39] for recent developments and references. Following Debye (1909), the notation ψn, χn is sometimes used instead of Sn, Cn.

Asymptotic forms

The Bessel functions have the following asymptotic forms. For small arguments 0<zα+1, one obtains, when α is not a negative integer:[4] Jα(z)1Γ(α+1)(z2)α. When α is a negative integer, we have Jα(z)(1)α(α)!(2z)α. For the Bessel function of the second kind we have three cases: Yα(z){2π(ln(z2)+γ)if α=0Γ(α)π(2z)α+1Γ(α+1)(z2)αcot(απ)if α is a positive integer (one term dominates unless α is imaginary),(1)αΓ(α)π(z2)αif α is a negative integer, where γ is the Euler–Mascheroni constant (0.5772...). For large real arguments z ≫ |α21/4|, one cannot write a true asymptotic form for Bessel functions of the first and second kind (unless α is half-integer) because they have zeros all the way out to infinity, which would have to be matched exactly by any asymptotic expansion. However, for a given value of arg z one can write an equation containing a term of order |z|−1:[40] Jα(z)=2πz(cos(zαπ2π4)+e|Im(z)|𝒪(|z|1))for |argz|<π,Yα(z)=2πz(sin(zαπ2π4)+e|Im(z)|𝒪(|z|1))for |argz|<π. (For α = 1/2 the last terms in these formulas drop out completely; see the spherical Bessel functions above.) The asymptotic forms for the Hankel functions are: Hα(1)(z)2πzei(zαπ2π4)for π<argz<2π,Hα(2)(z)2πzei(zαπ2π4)for 2π<argz<π. These can be extended to other values of arg z using equations relating H(1)
α
(zeimπ)
and H(2)
α
(zeimπ)
to H(1)
α
(z)
and H(2)
α
(z)
.[41] It is interesting that although the Bessel function of the first kind is the average of the two Hankel functions, Jα(z) is not asymptotic to the average of these two asymptotic forms when z is negative (because one or the other will not be correct there, depending on the arg z used). But the asymptotic forms for the Hankel functions permit us to write asymptotic forms for the Bessel functions of first and second kinds for complex (non-real) z so long as |z| goes to infinity at a constant phase angle arg z (using the square root having positive real part): Jα(z)12πzei(zαπ2π4)for π<argz<0,Jα(z)12πzei(zαπ2π4)for 0<argz<π,Yα(z)i12πzei(zαπ2π4)for π<argz<0,Yα(z)i12πzei(zαπ2π4)for 0<argz<π. For the modified Bessel functions, Hankel developed asymptotic expansions as well:[42][43] Iα(z)ez2πz(14α218z+(4α21)(4α29)2!(8z)2(4α21)(4α29)(4α225)3!(8z)3+)for |argz|<π2,Kα(z)π2zez(1+4α218z+(4α21)(4α29)2!(8z)2+(4α21)(4α29)(4α225)3!(8z)3+)for |argz|<3π2. There is also the asymptotic form (for large real z)[44] Iα(z)=12πz1+α2z24exp(αarsinh(αz)+z1+α2z2)(1+𝒪(1z1+α2z2)). When α = 1/2, all the terms except the first vanish, and we have I1/2(z)=2πsinh(z)zez2πzfor |argz|<π2,K1/2(z)=π2ezz. For small arguments 0<|z|α+1, we have Iα(z)1Γ(α+1)(z2)α,Kα(z){ln(z2)γif α=0Γ(α)2(2z)αif α>0

Properties

For integer order α = n, Jn is often defined via a Laurent series for a generating function: e(x2)(t1t)=n=Jn(x)tn an approach used by P. A. Hansen in 1843. (This can be generalized to non-integer order by contour integration or other methods.) Infinite series of Bessel functions in the form ν=JNν+p(x) where ν,p,N+ arise in many physical systems and are defined in closed form by the Sung series.[45] For example, when N = 3: ν=J3ν+p(x)=13[1+2cos(x3/22πp/3)]. More generally, the Sung series and the alternating Sung series are written as: ν=JNν+p(x)=1Nq=0N1eixsin2πq/Nei2πpq/N ν=(1)νJNν+p(x)=1Nq=0N1eixsin(2q+1)π/Nei(2q+1)πp/N A series expansion using Bessel functions (Kapteyn series) is

11z=1+2n=1Jn(nz).

Another important relation for integer orders is the Jacobi–Anger expansion: eizcosϕ=n=inJn(z)einϕ and e±izsinϕ=J0(z)+2n=1J2n(z)cos(2nϕ)±2in=0J2n+1(z)sin((2n+1)ϕ) which is used to expand a plane wave as a sum of cylindrical waves, or to find the Fourier series of a tone-modulated FM signal. More generally, a series f(z)=a0νJν(z)+2k=1akνJν+k(z) is called Neumann expansion of f. The coefficients for ν = 0 have the explicit form ak0=12πi|z|=cf(z)Ok(z)dz where Ok is Neumann's polynomial.[46] Selected functions admit the special representation f(z)=k=0akνJν+2k(z) with akν=2(ν+2k)0f(z)Jν+2k(z)zdz due to the orthogonality relation 0Jα(z)Jβ(z)dzz=2πsin(π2(αβ))α2β2 More generally, if f has a branch-point near the origin of such a nature that f(z)=k=0akJν+k(z) then {k=0akJν+k}(s)=11+s2k=0ak(s+1+s2)ν+k or k=0akξν+k=1+ξ22ξ{f}(1ξ22ξ) where {f} is the Laplace transform of f.[47] Another way to define the Bessel functions is the Poisson representation formula and the Mehler-Sonine formula: Jν(z)=(z2)νΓ(ν+12)π11eizs(1s2)ν12ds[5px]=2(z2)νπΓ(12ν)1sinzu(u21)ν+12du where ν > −1/2 and zC.[48] This formula is useful especially when working with Fourier transforms. Because Bessel's equation becomes Hermitian (self-adjoint) if it is divided by x, the solutions must satisfy an orthogonality relationship for appropriate boundary conditions. In particular, it follows that: 01xJα(xuα,m)Jα(xuα,n)dx=δm,n2[Jα+1(uα,m)]2=δm,n2[Jα(uα,m)]2 where α > −1, δm,n is the Kronecker delta, and uα,m is the mth zero of Jα(x). This orthogonality relation can then be used to extract the coefficients in the Fourier–Bessel series, where a function is expanded in the basis of the functions Jα(x uα,m) for fixed α and varying m. An analogous relationship for the spherical Bessel functions follows immediately: 01x2jα(xuα,m)jα(xuα,n)dx=δm,n2[jα+1(uα,m)]2 If one defines a boxcar function of x that depends on a small parameter ε as: fε(x)=1εrect(x1ε) (where rect is the rectangle function) then the Hankel transform of it (of any given order α > −1/2), gε(k), approaches Jα(k) as ε approaches zero, for any given k. Conversely, the Hankel transform (of the same order) of gε(k) is fε(x): 0kJα(kx)gε(k)dk=fε(x) which is zero everywhere except near 1. As ε approaches zero, the right-hand side approaches δ(x − 1), where δ is the Dirac delta function. This admits the limit (in the distributional sense): 0kJα(kx)Jα(k)dk=δ(x1) A change of variables then yields the closure equation:[49] 0xJα(ux)Jα(vx)dx=1uδ(uv) for α > −1/2. The Hankel transform can express a fairly arbitrary function[clarification needed] as an integral of Bessel functions of different scales. For the spherical Bessel functions the orthogonality relation is: 0x2jα(ux)jα(vx)dx=π2uvδ(uv) for α > −1. Another important property of Bessel's equations, which follows from Abel's identity, involves the Wronskian of the solutions: Aα(x)dBαdxdAαdxBα(x)=Cαx where Aα and Bα are any two solutions of Bessel's equation, and Cα is a constant independent of x (which depends on α and on the particular Bessel functions considered). In particular, Jα(x)dYαdxdJαdxYα(x)=2πx and Iα(x)dKαdxdIαdxKα(x)=1x, for α > −1. For α > −1, the even entire function of genus 1, xαJα(x), has only real zeros. Let 0<jα,1<jα,2<<jα,n< be all its positive zeros, then Jα(z)=(z2)αΓ(α+1)n=1(1z2jα,n2) (There are a large number of other known integrals and identities that are not reproduced here, but which can be found in the references.)

Recurrence relations

The functions Jα, Yα, H(1)
α
, and H(2)
α
all satisfy the recurrence relations[50] 2αxZα(x)=Zα1(x)+Zα+1(x) and 2dZα(x)dx=Zα1(x)Zα+1(x), where Z denotes J, Y, H(1), or H(2). These two identities are often combined, e.g. added or subtracted, to yield various other relations. In this way, for example, one can compute Bessel functions of higher orders (or higher derivatives) given the values at lower orders (or lower derivatives). In particular, it follows that[51] (1xddx)m[xαZα(x)]=xαmZαm(x),(1xddx)m[Zα(x)xα]=(1)mZα+m(x)xα+m. Modified Bessel functions follow similar relations: e(x2)(t+1t)=n=In(x)tn and ezcosθ=I0(z)+2n=1In(z)cosnθ and 12π02πezcos(mθ)+ycosθdθ=I0(z)I0(y)+2n=1In(z)Imn(y). The recurrence relation reads Cα1(x)Cα+1(x)=2αxCα(x),Cα1(x)+Cα+1(x)=2ddxCα(x), where Cα denotes Iα or eαiπKα. These recurrence relations are useful for discrete diffusion problems.

Transcendence

In 1929, Carl Ludwig Siegel proved that Jν(x), J'ν(x), and the logarithmic derivative J'ν(x)/Jν(x) are transcendental numbers when ν is rational and x is algebraic and nonzero.[52] The same proof also implies that Kν(x) is transcendental under the same assumptions.[53]

Sums with Bessel functions

The product of two Bessel functions admits the following sum: ν=Jν(x)Jnν(y)=Jn(x+y), ν=Jν(x)Jν+n(y)=Jn(yx). From these equalities it follows that ν=Jν(x)Jν+n(x)=δn,0 and as a consequence ν=Jν2(x)=1. These sums can be extended for a polynomial prefactor. For example, ν=νJν(x)Jν+n(x)=x2(δn,1+δn,1), ν=νJν2(x)=0, ν=ν2Jν(x)Jν+n(x)=x2(δn,1δn,1)+x24(δn,2+2δn,0+δn,2), ν=ν2Jν2(x)=x22.

Multiplication theorem

The Bessel functions obey a multiplication theorem λνJν(λz)=n=01n!((1λ2)z2)nJν+n(z), where λ and ν may be taken as arbitrary complex numbers.[54][55] For |λ2 − 1| < 1,[54] the above expression also holds if J is replaced by Y. The analogous identities for modified Bessel functions and |λ2 − 1| < 1 are λνIν(λz)=n=01n!((λ21)z2)nIν+n(z) and λνKν(λz)=n=0(1)nn!((λ21)z2)nKν+n(z).

Zeros of the Bessel function

Bourget's hypothesis

Bessel himself originally proved that for nonnegative integers n, the equation Jn(x) = 0 has an infinite number of solutions in x.[56] When the functions Jn(x) are plotted on the same graph, though, none of the zeros seem to coincide for different values of n except for the zero at x = 0. This phenomenon is known as Bourget's hypothesis after the 19th-century French mathematician who studied Bessel functions. Specifically it states that for any integers n ≥ 0 and m ≥ 1, the functions Jn(x) and Jn + m(x) have no common zeros other than the one at x = 0. The hypothesis was proved by Carl Ludwig Siegel in 1929.[57]

Transcendence

Siegel proved in 1929 that when ν is rational, all nonzero roots of Jν(x) and J'ν(x) are transcendental,[58] as are all the roots of Kν(x).[53] It is also known that all roots of the higher derivatives Jν(n)(x) for n ≤ 18 are transcendental, except for the special values J1(3)(±3)=0 and J0(4)(±3)=0.[58]

Numerical approaches

For numerical studies about the zeros of the Bessel function, see Gil, Segura & Temme (2007), Kravanja et al. (1998) and Moler (2004).

Numerical values

The first zeros in J0 (i.e., j0,1, j0,2 and j0,3) occur at arguments of approximately 2.40483, 5.52008 and 8.65373, respectively.[59]

See also

Notes

  1. Wilensky, Michael; Brown, Jordan; Hazelton, Bryna (June 2023). "Why and when to expect Gaussian error distributions in epoch of reionization 21-cm power spectrum measurements". Monthly Notices of the Royal Astronomical Society. 521 (4): 5191–5206. arXiv:2211.13576. doi:10.1093/mnras/stad863.
  2. Weisstein, Eric W. "Spherical Bessel Function of the Second Kind". MathWorld.
  3. 3.0 3.1 Weisstein, Eric W. "Bessel Function of the Second Kind". MathWorld.
  4. 4.0 4.1 Abramowitz and Stegun, p. 360, 9.1.10.
  5. Whittaker, Edmund Taylor; Watson, George Neville (1927). A Course of Modern Analysis (4th ed.). Cambridge University Press. p. 356. For example, Hansen (1843) and Schlömilch (1857).
  6. Abramowitz and Stegun, p. 358, 9.1.5.
  7. 7.0 7.1 Temme, Nico M. (1996). Special Functions: An introduction to the classical functions of mathematical physics (2nd print ed.). New York: Wiley. pp. 228–231. ISBN 0471113131.
  8. Weisstein, Eric W. "Hansen-Bessel Formula". MathWorld.
  9. Bessel, F. (1824). The relevant integral is an unnumbered equation between equations 28 and 29. Note that Bessel's Ikh would today be written Jh(k).
  10. Watson, p. 176
  11. "Properties of Hankel and Bessel Functions". Archived from the original on 2010-09-23. Retrieved 2010-10-18.
  12. "Integral representations of the Bessel function". www.nbi.dk. Archived from the original on 3 October 2022. Retrieved 25 March 2018.
  13. Arfken & Weber, exercise 11.1.17.
  14. Abramowitz and Stegun, p. 362, 9.1.69.
  15. Szegő, Gábor (1975). Orthogonal Polynomials (4th ed.). Providence, RI: AMS.
  16. "Bessel Functions of the First and Second Kind" (PDF). mhtlab.uwaterloo.ca. p. 3. Archived (PDF) from the original on 2022-10-09. Retrieved 24 May 2022.
  17. NIST Digital Library of Mathematical Functions, (10.8.1). Accessed on line Oct. 25, 2016.
  18. 18.0 18.1 Watson, p. 178.
  19. Abramowitz and Stegun, p. 358, 9.1.3, 9.1.4.
  20. Abramowitz and Stegun, p. 358, 9.1.6.
  21. Abramowitz and Stegun, p. 360, 9.1.25.
  22. Abramowitz and Stegun, p. 375, 9.6.2, 9.6.10, 9.6.11.
  23. Dixon; Ferrar, W.L. (1930). "A direct proof of Nicholson's integral". The Quarterly Journal of Mathematics. Oxford: 236–238. doi:10.1093/qmath/os-1.1.236.
  24. Abramowitz and Stegun, p. 375, 9.6.3, 9.6.5.
  25. Abramowitz and Stegun, p. 374, 9.6.1.
  26. Greiner, Walter; Reinhardt, Joachim (2009). Quantum Electrodynamics. Springer. p. 72. ISBN 978-3-540-87561-1.
  27. Watson, p. 181.
  28. "Modified Bessel Functions §10.32 Integral Representations". NIST Digital Library of Mathematical Functions. NIST. Retrieved 2024-11-20.
  29. Khokonov, M. Kh. (2004). "Cascade Processes of Energy Loss by Emission of Hard Photons". Journal of Experimental and Theoretical Physics. 99 (4): 690–707. Bibcode:2004JETP...99..690K. doi:10.1134/1.1826160. S2CID 122599440.. Derived from formulas sourced to I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic Press, New York, 1980).
  30. Referred to as such in: Teichroew, D. (1957). "The Mixture of Normal Distributions with Different Variances" (PDF). The Annals of Mathematical Statistics. 28 (2): 510–512. doi:10.1214/aoms/1177706981.
  31. Abramowitz and Stegun, p. 437, 10.1.1.
  32. Abramowitz and Stegun, p. 439, 10.1.25, 10.1.26.
  33. Abramowitz and Stegun, p. 438, 10.1.11.
  34. Abramowitz and Stegun, p. 438, 10.1.12.
  35. Abramowitz and Stegun, p. 439, 10.1.39.
  36. L.V. Babushkina, M.K. Kerimov, A.I. Nikitin, Algorithms for computing Bessel functions of half-integer order with complex arguments, p. 110, p. 111.
  37. Abramowitz and Stegun, p. 439, 10.1.23, 10.1.24.
  38. Griffiths. Introduction to Quantum Mechanics, 2nd edition, p. 154.
  39. Du, Hong (2004). "Mie-scattering calculation". Applied Optics. 43 (9): 1951–1956. Bibcode:2004ApOpt..43.1951D. doi:10.1364/ao.43.001951. PMID 15065726.
  40. Abramowitz and Stegun, p. 364, 9.2.1.
  41. NIST Digital Library of Mathematical Functions, Section 10.11.
  42. Abramowitz and Stegun, p. 377, 9.7.1.
  43. Abramowitz and Stegun, p. 378, 9.7.2.
  44. Fröhlich and Spencer 1981 Appendix B
  45. Sung, S.; Hovden, R. (2022). "On Infinite Series of Bessel functions of the First Kind". arXiv:2211.01148 [math-ph].
  46. Abramowitz and Stegun, p. 363, 9.1.82 ff.
  47. Watson, G. N. (25 August 1995). A Treatise on the Theory of Bessel Functions. Cambridge University Press. ISBN 9780521483919. Retrieved 25 March 2018 – via Google Books.
  48. Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "8.411.10.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.
  49. Arfken & Weber, section 11.2
  50. Abramowitz and Stegun, p. 361, 9.1.27.
  51. Abramowitz and Stegun, p. 361, 9.1.30.
  52. Siegel, Carl L. (2014). "Über einige Anwendungen diophantischer Approximationen". On Some Applications of Diophantine Approximations: a translation of Carl Ludwig Siegel's Über einige Anwendungen diophantischer Approximationen by Clemens Fuchs, with a commentary and the article Integral points on curves: Siegel's theorem after Siegel's proof by Clemens Fuchs and Umberto Zannier (in Deutsch). Scuola Normale Superiore. pp. 81–138. doi:10.1007/978-88-7642-520-2_2. ISBN 978-88-7642-520-2.
  53. 53.0 53.1 James, R. D. (November 1950). "Review: Carl Ludwig Siegel, Transcendental numbers". Bulletin of the American Mathematical Society. 56 (6): 523–526. doi:10.1090/S0002-9904-1950-09435-X.
  54. 54.0 54.1 Abramowitz and Stegun, p. 363, 9.1.74.
  55. Truesdell, C. (1950). "On the Addition and Multiplication Theorems for the Special Functions". Proceedings of the National Academy of Sciences. 1950 (12): 752–757. Bibcode:1950PNAS...36..752T. doi:10.1073/pnas.36.12.752. PMC 1063284. PMID 16578355.
  56. Bessel, F. (1824), article 14.
  57. Watson, pp. 484–485.
  58. 58.0 58.1 Lorch, Lee; Muldoon, Martin E. (1995). "Transcendentality of zeros of higher dereivatives of functions involving Bessel functions". International Journal of Mathematics and Mathematical Sciences. 18 (3): 551–560. doi:10.1155/S0161171295000706.
  59. Abramowitz & Stegun, p409

References

External links