Pentellated 7-orthoplexes

From The Right Wiki
Jump to navigationJump to search
Orthogonal projections in B6 Coxeter plane
File:7-cube t6 B6.svg
7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t16 B6.svg
Pentellated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t156 B6.svg
Pentitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t146 B6.svg
Penticantellated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1456 B6.svg
Penticantitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t136 B6.svg
Pentiruncinated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1356 B6.svg
Pentiruncitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1346 B6.svg
Pentiruncicantellated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t13456 B6.svg
Pentiruncicantitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t126 B6.svg
Pentistericated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1256 B6.svg
Pentisteritruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1246 B6.svg
Pentistericantellated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t12456 B6.svg
Pentistericantitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t1235 B6.svg
Pentisteriruncinated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t12356 B6.svg
Pentisteriruncitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t12346 B6.svg
Pentisteriruncicantellated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:7-cube t123456 B6.svg
Pentisteriruncicantitruncated 7-orthoplex
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png

In seven-dimensional geometry, a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-orthoplex. There are 32 unique pentellations of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and sterications. 16 are more simply constructed relative to the 7-cube. These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.

Pentellated 7-orthoplex

Pentellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 2688
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Small terated hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)[1]

Coordinates

Coordinates are permutations of (0,1,1,1,1,1,2)2

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t16.svg File:7-cube t16 B6.svg File:7-cube t16 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t16 B4.svg File:7-cube t16 B3.svg File:7-cube t16 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t16 A5.svg File:7-cube t16 A3.svg
Dihedral symmetry [6] [4]

Pentitruncated 7-orthoplex

pentitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 87360
Vertices 13440
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t156.svg File:7-cube t156 B6.svg File:7-cube t156 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t156 B4.svg File:7-cube t156 B3.svg File:7-cube t156 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t156 A5.svg File:7-cube t156 A3.svg
Dihedral symmetry [6] [4]

Coordinates

Coordinates are permutations of (0,1,1,1,1,2,3).

Penticantellated 7-orthoplex

Penticantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 188160
Vertices 26880
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)[3]

Coordinates

Coordinates are permutations of (0,1,1,1,2,2,3)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t146.svg File:7-cube t146 B6.svg File:7-cube t146 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t146 B4.svg File:7-cube t146 B3.svg File:7-cube t146 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t146 A5.svg File:7-cube t146 A3.svg
Dihedral symmetry [6] [4]

Penticantitruncated 7-orthoplex

penticantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 295680
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)[4]

Coordinates

Coordinates are permutations of (0,1,1,1,2,3,4)2.

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t145.svg File:7-cube t145 B6.svg File:7-cube t145 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t145 B4.svg File:7-cube t145 B3.svg File:7-cube t145 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t145 A5.svg File:7-cube t145 A3.svg
Dihedral symmetry [6] [4]

Pentiruncinated 7-orthoplex

pentiruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 174720
Vertices 26880
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)[5]

Coordinates

The coordinates are permutations of (0,1,1,2,2,2,3)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t136.svg File:7-cube t136 B6.svg File:7-cube t136 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t136 B4.svg File:7-cube t136 B3.svg File:7-cube t136 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t136 A5.svg File:7-cube t136 A3.svg
Dihedral symmetry [6] [4]

Pentiruncitruncated 7-orthoplex

pentiruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 443520
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)[6]

Coordinates

Coordinates are permutations of (0,1,1,2,2,3,4)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t1356.svg File:7-cube t1356 B6.svg File:7-cube t1356 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t1356 B4.svg File:7-cube t1356 B3.svg File:7-cube t1356 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t1356 A5.svg File:7-cube t1356 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantellated 7-orthoplex

pentiruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 403200
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)[7]

Coordinates

Coordinates are permutations of (0,1,1,2,3,3,4)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t1346.svg File:7-cube t1346 B6.svg File:7-cube t1346 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t1346 B4.svg File:7-cube t1346 B3.svg File:7-cube t1346 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t1346 A5.svg File:7-cube t1346 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 7-orthoplex

pentiruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 725760
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)[8]

Coordinates

Coordinates are permutations of (0,1,1,2,3,4,5)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex File:7-cube t13456 B6.svg File:7-cube t13456 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t13456 B4.svg File:7-cube t13456 B3.svg File:7-cube t13456 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t13456 A5.svg File:7-cube t13456 A3.svg
Dihedral symmetry [6] [4]

Pentistericated 7-orthoplex

pentistericated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 67200
Vertices 13440
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)[9]

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t126.svg File:7-cube t126 B6.svg File:7-cube t126 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t126 B4.svg File:7-cube t126 B3.svg File:7-cube t126 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t126 A5.svg File:7-cube t126 A3.svg
Dihedral symmetry [6] [4]

Coordinates

Coordinates are permutations of (0,1,2,2,2,2,3)2.

Pentisteritruncated 7-orthoplex

pentisteritruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 241920
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)[10]

Coordinates

Coordinates are permutations of (0,1,2,2,2,3,4)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t1256.svg File:7-cube t1256 B6.svg File:7-cube t1256 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t1256 B4.svg File:7-cube t1256 B3.svg File:7-cube t1256 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t1256 A5.svg File:7-cube t1256 A3.svg
Dihedral symmetry [6] [4]

Pentistericantellated 7-orthoplex

pentistericantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 403200
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)[11]

Coordinates

Coordinates are permutations of (0,1,2,2,3,3,4)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t1246.svg File:7-cube t1246 B6.svg File:7-cube t1246 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t1246 B4.svg File:7-cube t1246 B3.svg File:7-cube t1246 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t1246 A5.svg File:7-cube t1246 A3.svg
Dihedral symmetry [6] [4]

Pentistericantitruncated 7-orthoplex

pentistericantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)[12]

Coordinates

Coordinates are permutations of (0,1,2,2,3,4,5)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex File:7-cube t12456 B6.svg File:7-cube t12456 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t12456 B4.svg File:7-cube t12456 B3.svg File:7-cube t12456 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t12456 A5.svg File:7-cube t12456 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncinated 7-orthoplex

Pentisteriruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 241920
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bipenticantitruncated 7-orthoplex as t1,2,3,6{35,4}
  • Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)[13]

Coordinates

Coordinates are permutations of (0,1,2,3,3,3,4)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph File:7-cube t1236.svg File:7-cube t1236 B6.svg File:7-cube t1236 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t1236 B4.svg File:7-cube t1236 B3.svg File:7-cube t1236 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t1236 A5.svg File:7-cube t1236 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncitruncated 7-orthoplex

pentisteriruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)[14]

Coordinates

Coordinates are permutations of (0,1,2,3,3,4,5)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex File:7-cube t12356 B6.svg File:7-cube t12356 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t12356 B4.svg File:7-cube t12356 B3.svg File:7-cube t12356 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t12356 A5.svg File:7-cube t12356 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncicantellated 7-orthoplex

pentisteriruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6{35,4}
  • Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)[15]

Coordinates

Coordinates are permutations of (0,1,2,3,4,4,5)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex File:7-cube t12346 B6.svg File:7-cube t12346 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t12346 B4.svg File:7-cube t12346 B3.svg File:7-cube t12346 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t12346 A5.svg File:7-cube t12346 A3.svg
Dihedral symmetry [6] [4]

Pentisteriruncicantitruncated 7-orthoplex

pentisteriruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4,5{35,4}
Coxeter diagram File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 4.pngFile:CDel node.png
File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 1128960
Vertices 322560
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

  • Great terated hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)[16]

Coordinates

Coordinates are permutations of (0,1,2,3,4,5,6)2.

Images

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex File:7-cube t123456 B6.svg File:7-cube t123456 B5.svg
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph File:7-cube t123456 B4.svg File:7-cube t123456 B3.svg File:7-cube t123456 B2.svg
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph File:7-cube t123456 A5.svg File:7-cube t123456 A3.svg
Dihedral symmetry [6] [4]

Notes

  1. Klitzing, (x3o3o3o3o3x4o - )
  2. Klitzing, (x3x3o3o3o3x4o - )
  3. Klitzing, (x3o3x3o3o3x4o - )
  4. Klitzing, (x3x3x3oxo3x4o - )
  5. Klitzing, (x3o3o3x3o3x4o - )
  6. Klitzing, (x3x3o3x3o3x4o - )
  7. Klitzing, (x3o3x3x3o3x4o - )
  8. Klitzing, (x3x3x3x3o3x4o - )
  9. Klitzing, (x3o3o3o3x3x4o - )
  10. Klitzing, (x3x3o3o3x3x4o - )
  11. Klitzing, (x3o3x3o3x3x4o - )
  12. Klitzing, (x3x3x3o3x3x4o - )
  13. Klitzing, (x3o3o3x3x3x4o - )
  14. Klitzing, (x3x3o3x3x3x4o - )
  15. Klitzing, (x3o3x3x3x3x4o - )
  16. Klitzing, (x3x3x3x3x3x4o - )

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)".

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds