Isotopes of samarium
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Sm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.066×1011 y) and 148Sm (6.3×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm (9.20×107 y)[2] is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide.[5] It is the longest-lived nuclide that has not yet been confirmed to be primordial. Other than the naturally occurring isotopes, the longest-lived radioisotopes are 151Sm, which has a half-life of 94.6 years,[6] and 145Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from 129Sm to 168Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. This element also has twelve known isomers with the most stable being 141mSm (t1/2 22.6 minutes), 143m1Sm (t1/2 66 seconds) and 139mSm (t1/2 10.7 seconds). The long lived isotopes, 146Sm, 147Sm, and 148Sm, primarily decay by alpha decay to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones decay by beta decay to isotopes of europium. A 2012 paper[7] revising the estimated half-life of 146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted in 2023.[7][8] Isotopes of samarium are used in samarium–neodymium dating for determining the age relationships of rocks and meteorites. 151Sm is a medium-lived fission product and acts as a neutron poison in the nuclear fuel cycle. The stable fission product 149Sm is also a neutron poison. Samarium is theoretically the lightest element with even atomic number with no stable isotopes (all isotopes of it can theoretically go either alpha decay or beta decay or double beta decay), other such elements are those with atomic numbers > 66 (dysprosium, which is the heaviest theoretically stable nuclide).
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4][n 5] |
Decay mode [n 6] |
Daughter isotope [n 7][n 8] |
Spin and parity [n 9][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 5] | Normal proportion | Range of variation | |||||||||||||||||
129Sm | 62 | 67 | 128.95464(54)# | 550(100) ms | 5/2+# | ||||||||||||||
130Sm | 62 | 68 | 129.94892(43)# | 1# s | β+ | 130Pm | 0+ | ||||||||||||
131Sm | 62 | 69 | 130.94611(32)# | 1.2(2) s | β+ | 131Pm | 5/2+# | ||||||||||||
β+, p (rare) | 130Nd | ||||||||||||||||||
132Sm | 62 | 70 | 131.94069(32)# | 4.0(3) s | β+ | 132Pm | 0+ | ||||||||||||
β+, p | 131Nd | ||||||||||||||||||
133Sm | 62 | 71 | 132.93867(21)# | 2.90(17) s | β+ | 133Pm | (5/2+) | ||||||||||||
β+, p | 132Nd | ||||||||||||||||||
134Sm | 62 | 72 | 133.93397(21)# | 10(1) s | β+ | 134Pm | 0+ | ||||||||||||
135Sm | 62 | 73 | 134.93252(17) | 10.3(5) s | β+ (99.98%) | 135Pm | (7/2+) | ||||||||||||
β+, p (.02%) | 134Nd | ||||||||||||||||||
135mSm | 0(300)# keV | 2.4(9) s | β+ | 135Pm | (3/2+, 5/2+) | ||||||||||||||
136Sm | 62 | 74 | 135.928276(13) | 47(2) s | β+ | 136Pm | 0+ | ||||||||||||
136mSm | 2264.7(11) keV | 15(1) μs | (8−) | ||||||||||||||||
137Sm | 62 | 75 | 136.92697(5) | 45(1) s | β+ | 137Pm | (9/2−) | ||||||||||||
137mSm | 180(50)# keV | 20# s | β+ | 137Pm | 1/2+# | ||||||||||||||
138Sm | 62 | 76 | 137.923244(13) | 3.1(2) min | β+ | 138Pm | 0+ | ||||||||||||
139Sm | 62 | 77 | 138.922297(12) | 2.57(10) min | β+ | 139Pm | 1/2+ | ||||||||||||
139mSm | 457.40(22) keV | 10.7(6) s | IT (93.7%) | 139Sm | 11/2− | ||||||||||||||
β+ (6.3%) | 139Pm | ||||||||||||||||||
140Sm | 62 | 78 | 139.918995(13) | 14.82(12) min | β+ | 140Pm | 0+ | ||||||||||||
141Sm | 62 | 79 | 140.918476(9) | 10.2(2) min | β+ | 141Pm | 1/2+ | ||||||||||||
141mSm | 176.0(3) keV | 22.6(2) min | β+ (99.69%) | 141Pm | 11/2− | ||||||||||||||
IT (.31%) | 141Sm | ||||||||||||||||||
142Sm | 62 | 80 | 141.915198(6) | 72.49(5) min | β+ | 142Pm | 0+ | ||||||||||||
143Sm | 62 | 81 | 142.914628(4) | 8.75(8) min | β+ | 143Pm | 3/2+ | ||||||||||||
143m1Sm | 753.99(16) keV | 66(2) s | IT (99.76%) | 143Sm | 11/2− | ||||||||||||||
β+ (.24%) | 143Pm | ||||||||||||||||||
143m2Sm | 2793.8(13) keV | 30(3) ms | 23/2(−) | ||||||||||||||||
144Sm | 62 | 82 | 143.911999(3) | Observationally stable[n 10] | 0+ | 0.0307(7) | |||||||||||||
144mSm | 2323.60(8) keV | 880(25) ns | 6+ | ||||||||||||||||
145Sm | 62 | 83 | 144.913410(3) | 340(3) d | EC | 145Pm | 7/2− | ||||||||||||
145mSm | 8786.2(7) keV | 990(170) ns [0.96(+19−15) μs] |
(49/2+) | ||||||||||||||||
146Sm | 62 | 84 | 145.913041(4) | 9.20(26)×107 y[2] | α | 142Nd | 0+ | Trace | |||||||||||
147Sm[n 11][n 12][n 13] | 62 | 85 | 146.9148979(26) | 1.066(5)×1011 y | α | 143Nd | 7/2− | 0.1499(18) | |||||||||||
148Sm[n 11] | 62 | 86 | 147.9148227(26) | 6.3(13)×1015 y | α | 144Nd | 0+ | 0.1124(10) | |||||||||||
149Sm[n 12][n 14] | 62 | 87 | 148.9171847(26) | Observationally stable[n 15] | 7/2− | 0.1382(7) | |||||||||||||
150Sm | 62 | 88 | 149.9172755(26) | Observationally stable[n 16] | 0+ | 0.0738(1) | |||||||||||||
151Sm[n 12][n 14] | 62 | 89 | 150.9199324(26) | 94.6(6) y | β− | 151Eu | 5/2− | ||||||||||||
151mSm | 261.13(4) keV | 1.4(1) μs | (11/2)− | ||||||||||||||||
152Sm[n 12] | 62 | 90 | 151.9197324(27) | Observationally stable[n 17] | 0+ | 0.2675(16) | |||||||||||||
153Sm[n 12] | 62 | 91 | 152.9220974(27) | 46.2846(23) h | β− | 153Eu | 3/2+ | ||||||||||||
153mSm | 98.37(10) keV | 10.6(3) ms | IT | 153Sm | 11/2− | ||||||||||||||
154Sm[n 12] | 62 | 92 | 153.9222093(27) | Observationally stable[n 18] | 0+ | 0.2275(29) | |||||||||||||
155Sm | 62 | 93 | 154.9246402(28) | 22.3(2) min | β− | 155Eu | 3/2− | ||||||||||||
156Sm | 62 | 94 | 155.925528(10) | 9.4(2) h | β− | 156Eu | 0+ | ||||||||||||
156mSm | 1397.55(9) keV | 185(7) ns | 5− | ||||||||||||||||
157Sm | 62 | 95 | 156.92836(5) | 8.03(7) min | β− | 157Eu | (3/2−) | ||||||||||||
158Sm | 62 | 96 | 157.92999(8) | 5.30(3) min | β− | 158Eu | 0+ | ||||||||||||
159Sm | 62 | 97 | 158.93321(11) | 11.37(15) s | β− | 159Eu | 5/2− | ||||||||||||
160Sm | 62 | 98 | 159.93514(21)# | 9.6(3) s | β− | 160Eu | 0+ | ||||||||||||
161Sm | 62 | 99 | 160.93883(32)# | 4.349+0.425 −0.441 s[10] |
β− | 161Eu | 7/2+# | ||||||||||||
162Sm | 62 | 100 | 161.94122(54)# | 3.369+0.200 −0.303 s[10] |
β− | 162Eu | 0+ | ||||||||||||
163Sm | 62 | 101 | 162.94536(75)# | 1.744+0.180 −0.204 s[10] |
β− | 163Eu | 1/2−# | ||||||||||||
164Sm | 62 | 102 | 163.94828(86)# | 1.422+0.54 −0.59 s[10] |
β− | 164Eu | 0+ | ||||||||||||
165Sm | 62 | 103 | 164.95298(97)# | 592+51 −55 ms[10] |
β− (98.64%) | 165Eu | 5/2−# | ||||||||||||
β−, n (1.36%) | 164Eu | ||||||||||||||||||
166Sm | 62 | 104 | 396+56 −63 ms[10] |
β− (95.62%) | 166Eu | 0+ | |||||||||||||
β−, n (4.38%) | 165Eu | ||||||||||||||||||
167Sm | 62 | 105 | 334+83 −78 ms[10] |
β− | 167Eu | ||||||||||||||
β−, n | 166Eu | ||||||||||||||||||
168Sm | 62 | 106 | 353+210 −164 ms[10] |
β− | 168Eu | 0+ | |||||||||||||
β−, n | 167Eu | ||||||||||||||||||
This table header & footer: |
- ↑ mSm – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ↑ Bold half-life – nearly stable, half-life longer than age of universe.
- ↑ 5.0 5.1 5.2 # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑
Modes of decay:
IT: Isomeric transition
p: Proton emission - ↑ Bold italics symbol as daughter – Daughter product is nearly stable.
- ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ Believed to undergo β+β+ decay to 144Nd[1]
- ↑ 11.0 11.1 Primordial radioisotope
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 Fission product
- ↑ Used in Samarium–neodymium dating
- ↑ 14.0 14.1 Neutron poison in reactors
- ↑ Believed to undergo α decay to 145Nd with a half-life over 2×1015 years[1][9]
- ↑ Believed to undergo α decay to 146Nd[9]
- ↑ Believed to undergo α decay to 148Nd[9]
- ↑ Believed to undergo β−β− decay to 154Gd with a half-life over 2.3×1018 years[1]
Samarium-149
Samarium-149 (149Sm) is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product 149Nd (yield 1.0888%). 149Sm is a neutron-absorbing nuclear poison with significant effect on nuclear reactor operation, second only to 135Xe. Its neutron cross section is 40140 barns for thermal neutrons. The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since 149Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts with xenon-135, which accumulates from the beta decay of iodine-135 (a short lived fission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-called xenon pit.
Samarium-151
t½ (year) |
Yield (%) |
Q (keV) |
βγ | |
---|---|---|---|---|
155Eu | 4.76 | 0.0803 | 252 | βγ |
85Kr | 10.76 | 0.2180 | 687 | βγ |
113mCd | 14.1 | 0.0008 | 316 | β |
90Sr | 28.9 | 4.505 | 2826 | β |
137Cs | 30.23 | 6.337 | 1176 | βγ |
121mSn | 43.9 | 0.00005 | 390 | βγ |
151Sm | 88.8 | 0.5314 | 77 | β |
Thermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 0.399 ± 0.065 | 0.165 ± 0.035 |
233U | 0.333 ± 0.017 | 0.312 ± 0.014 | 0.49 ± 0.11 |
235U | 0.4204 ± 0.0071 | 0.431 ± 0.015 | 0.388 ± 0.061 |
238U | not fissile | 0.810 ± 0.012 | 0.800 ± 0.057 |
239Pu | 0.776 ± 0.018 | 0.797 ± 0.037 | ? |
241Pu | 0.86 ± 0.24 | 0.910 ± 0.025 | ? |
Samarium-151 (151Sm) has a half-life of 88.8 years, undergoing low-energy beta decay, and has a fission product yield of 0.4203% for thermal neutrons and 235U, about 39% of 149Sm's yield. The yield is somewhat higher for 239Pu. Its neutron absorption cross section for thermal neutrons is high at 15200 barns, about 38% of 149Sm's absorption cross section, or about 20 times that of 235U. Since the ratios between the production and absorption rates of 151Sm and 149Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since 149Sm reaches equilibrium in about 500 hours (20 days), 151Sm should reach equilibrium in about 50 days. Since nuclear fuel is used for several years (burnup) in a nuclear power plant, the final amount of 151Sm in the spent nuclear fuel at discharge is only a small fraction of the total 151Sm produced during the use of the fuel. According to one study, the mass fraction of 151Sm in spent fuel is about 0.0025 for heavy loading of MOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for the medium-lived fission product 137Cs.[12] The decay energy of 151Sm is also about an order of magnitude less than that of 137Cs. The low yield, low survival rate, and low decay energy mean that 151Sm has insignificant nuclear waste impact compared to the two main medium-lived fission products 137Cs and 90Sr.
Samarium-153
Samarium-153 (153Sm) has a half-life of 46.3 hours, undergoing β− decay into 153Eu. As a component of samarium lexidronam, it is used in palliation of bone cancer.[13] It is treated by the body in a similar manner to calcium, and it localizes selectively to bone.
References
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
- ↑ 1.0 1.1 1.2 1.3 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ↑ 2.0 2.1 2.2 Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1). doi:10.1038/s41598-024-64104-6. PMC 11294585.
- ↑ "Standard Atomic Weights: Samarium". CIAAW. 2005.
- ↑ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ↑ Samir Maji; et al. (2006). "Separation of samarium and neodymium: a prerequisite for getting signals from nuclear synthesis". Analyst. 131 (12): 1332–1334. Bibcode:2006Ana...131.1332M. doi:10.1039/b608157f. PMID 17124541.
- ↑ He, M.; Shen, H.; Shi, G.; Yin, X.; Tian, W.; Jiang, S. (2009). "Half-life of 151Sm remeasured". Physical Review C. 80 (6): 064305. Bibcode:2009PhRvC..80f4305H. doi:10.1103/PhysRevC.80.064305.
- ↑ 7.0 7.1 Kinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C. M.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Jiang, C. L.; Marley, S. T.; Nakanishi, T.; Pardo, R. C.; Rehm, K. E.; Robertson, D.; Scott, R.; Schmitt, C.; Tang, X. D.; Vondrasek, R.; Yokoyama, A. (30 March 2012). "A Shorter 146Sm Half-Life Measured and Implications for 146Sm-142Nd Chronology in the Solar System". Science. 335 (6076): 1614–1617. arXiv:1109.4805. Bibcode:2012Sci...335.1614K. doi:10.1126/science.1215510. ISSN 0036-8075. PMID 22461609. S2CID 206538240. (Retracted, see doi:10.1126/science.adh7739, PMID 36996231, Retraction Watch)
- ↑
- Kinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C. M.; DiGiovine, B.; Greene, J. P.; Jiang, C. L.; Marley, S. T.; Pardo, R. C.; Rehm, K. E.; Robertson, D.; Scott, R.; Schmitt, C.; Tang, X. D.; Vondrasek, R.; Yokoyama, A. (30 March 2023). "Retraction". Science. 379 (6639): 1307. Bibcode:2023Sci...379.1307K. doi:10.1126/science.adh7739. PMID 36996231. S2CID 236990856.
- Joelving, Frederik (30 March 2023). "One small error for a physicist, one giant blunder for planetary science". Retraction Watch. Retrieved 30 March 2023.
- ↑ 9.0 9.1 9.2 Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098.
- ↑ 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.
- ↑ https://www-nds.iaea.org/sgnucdat/c3.htm Cumulative Fission Yields, IAEA
- ↑ Christophe Demazière. Reactor Physics Calculations on MOX Fuel in Boiling Water Reactors (BWRs) (PDF) (Report). OECD Nuclear Energy Agency. Figure 2, page 6
- ↑ Ballantyne, Jane C; Fishman, Scott M; Rathmell, James P. (2009-10-01). Bonica's Management of Pain. Lippincott Williams & Wilkins. pp. 655–. ISBN 978-0-7817-6827-6. Retrieved 19 July 2011.