Superconformal algebra

From The Right Wiki
Jump to navigationJump to search

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, superconformal algebras are finite-dimensional and generate the superconformal group (in two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup).

Superconformal algebra in dimension greater than 2

The conformal group of the (p+q)-dimensional space p,q is SO(p+1,q+1) and its Lie algebra is 𝔰𝔬(p+1,q+1). The superconformal algebra is a Lie superalgebra containing the bosonic factor 𝔰𝔬(p+1,q+1) and whose odd generators transform in spinor representations of 𝔰𝔬(p+1,q+1). Given Kac's classification of finite-dimensional simple Lie superalgebras, this can only happen for small values of p and q. A (possibly incomplete) list is

  • 𝔬𝔰𝔭*(2N|2,2) in 3+0D thanks to 𝔲𝔰𝔭(2,2)𝔰𝔬(4,1);
  • 𝔬𝔰𝔭(N|4) in 2+1D thanks to 𝔰𝔭(4,)𝔰𝔬(3,2);
  • 𝔰𝔲*(2N|4) in 4+0D thanks to 𝔰𝔲*(4)𝔰𝔬(5,1);
  • 𝔰𝔲(2,2|N) in 3+1D thanks to 𝔰𝔲(2,2)𝔰𝔬(4,2);
  • 𝔰𝔩(4|N) in 2+2D thanks to 𝔰𝔩(4,)𝔰𝔬(3,3);
  • real forms of F(4) in five dimensions
  • 𝔬𝔰𝔭(8*|2N) in 5+1D, thanks to the fact that spinor and fundamental representations of 𝔰𝔬(8,) are mapped to each other by outer automorphisms.

Superconformal algebra in 3+1D

According to [1][2] the superconformal algebra with 𝒩 supersymmetries in 3+1 dimensions is given by the bosonic generators Pμ, D, Mμν, Kμ, the U(1) R-symmetry A, the SU(N) R-symmetry Tji and the fermionic generators Qαi, Qiα˙, Siα and Sα˙i. Here, μ,ν,ρ, denote spacetime indices; α,β, left-handed Weyl spinor indices; α˙,β˙, right-handed Weyl spinor indices; and i,j, the internal R-symmetry indices. The Lie superbrackets of the bosonic conformal algebra are given by

[Mμν,Mρσ]=ηνρMμσημρMνσ+ηνσMρμημσMρν
[Mμν,Pρ]=ηνρPμημρPν
[Mμν,Kρ]=ηνρKμημρKν
[Mμν,D]=0
[D,Pρ]=Pρ
[D,Kρ]=+Kρ
[Pμ,Kν]=2Mμν+2ημνD
[Kn,Km]=0
[Pn,Pm]=0

where η is the Minkowski metric; while the ones for the fermionic generators are:

{Qαi,Qβ˙j}=2δijσαβ˙μPμ
{Q,Q}={Q,Q}=0
{Sαi,Sβ˙j}=2δjiσαβ˙μKμ
{S,S}={S,S}=0
{Q,S}=
{Q,S}={Q,S}=0

The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:

[A,M]=[A,D]=[A,P]=[A,K]=0
[T,M]=[T,D]=[T,P]=[T,K]=0

But the fermionic generators do carry R-charge:

[A,Q]=12Q
[A,Q]=12Q
[A,S]=12S
[A,S]=12S
[Tji,Qk]=δkiQj
[Tji,Qk]=δjkQi
[Tji,Sk]=δjkSi
[Tji,Sk]=δkiSj

Under bosonic conformal transformations, the fermionic generators transform as:

[D,Q]=12Q
[D,Q]=12Q
[D,S]=12S
[D,S]=12S
[P,Q]=[P,Q]=0
[K,S]=[K,S]=0

Superconformal algebra in 2D

There are two possible algebras with minimal supersymmetry in two dimensions; a Neveu–Schwarz algebra and a Ramond algebra. Additional supersymmetry is possible, for instance the N = 2 superconformal algebra.

See also

References

  1. West, P. C. (2002). "Introduction to Rigid Supersymmetric Theories". Confinement, Duality, and Non-Perturbative Aspects of QCD. NATO Science Series: B. Vol. 368. pp. 453–476. arXiv:hep-th/9805055. doi:10.1007/0-306-47056-X_17. ISBN 0-306-45826-8. S2CID 119413468.
  2. Gates, S. J.; Grisaru, Marcus T.; Rocek, M.; Siegel, W. (1983). "Superspace, or one thousand and one lessons in supersymmetry". Frontiers in Physics. 58: 1–548. arXiv:hep-th/0108200. Bibcode:2001hep.th....8200G.