Tetrasodium tris(bathophenanthroline disulfonate)ruthenium(II)
File:Tetrasodium tris(bathophenanthroline disulfonate)ruthenium(II).png | |
Identifiers | |
---|---|
EC Number |
|
Properties | |
C72H42N6Na4O18RuS6 | |
Molar mass | 1664.54 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Tetrasodium tris(bathophenanthroline disulfonate)ruthenium(II) (Na4Ru(bps)3) is a sodium salt of coordination compound. In this form, it is the salt of a sulfonic acid. This compound is an extension of the phenanthroline series of coordination compounds. Ruthenium(II) tris(bathophenanthroline disulfonate), referring to the anionic fragment, is used as a protein dye in biochemistry for differentiating and detecting different proteins in laboratory settings. In recent years, 2-D electrophoresis has been widely accepted as a standard procedure to separate complex protein mixtures in proteome studies (Proteomics). Protein visualisation by Ruthenium(II) tris(bathophenthroline disulfonate) has become a firmly established and widely used method in proteomic analysis[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16] and a crucial step in gene expression profiling. For protein detection, it is advantageous to use fluorescent labels containing chromophores which have longer excitation wavelength and emission wavelength than the aromatic amino acids. The dyes used for this important step should combine attributes like good signal to background ratio (contrast), broad linear dynamic range, broad application range, photochemical stability and compatibility to protein identification techniques, e.g. mass spectrometry (MS) or Western blotting.
History
Originally, the ruthenium transition metal complex, ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline disulfonate) also termed as ruthenium(II) tris(bathophentroline disulfonate) (RuBPS) was synthesized by Bannwarth [17] as a precursor molecule for a dye that was used as a non-radioactive label for oligo nucleotides.[18] Within 5 years, similar transition metal complexes had been recognized as workable protein detection reagents,[19] and shortly afterwards the europium analog of RuBPS was demonstrated as an effective fluorescent protein detection reagent.[20] The first reported use of RuBPS for protein detection appears to be the commercial release of the proprietary Sypro Ruby protein staining solution in 1999.[21][22] While Sypro Ruby is proprietary & is not stated to have RuBPS as the major component, it is stated to have ruthenium, and Rabilloud et al. synthesized RuPBS and compared it to Sypro Ruby, finding them to be highly similar, albeit not identical, reagents for fluorescent detection of proteins in polyacrylamide gels.[21][23] Notably, Rabilloud et al. made their comparisons against the first formulation of Sypro Ruby, the second (and presumed current) formulation of Sypro Ruby has the same product numbers (but distinct lot numbers) and an increased performance with diverse fixative solutions.[24][25] The fact that RuBPS is not only easy to synthesize but also easy to handle, induced further developments in this field.
Ongoing developments
Lamanda et al. improved the RuBPS staining protocol by selectively destaining the polyacrylamide matrix while the protein content remained tinctured. This new technique entailed a variety of advantages like strong signals, ameliorated signal to background ratio, better linearity and advanced baseline resolution.[25] More recently, heteroleptic ruthenium(II) complexes highly similar to RuBPS were shown to have some improved properties, specifically a broader pH range where they could be used.[26]
References
- ↑ Miller, I.; Crawford, J.; Gianazza, E. (October 2006). "Protein stains for proteomic applications: Which, when, why?". Proteomics. 6 (20): 5385–5408. doi:10.1002/pmic.200600323. PMID 16991193. S2CID 27311378.
- ↑ Bryborn, Malin; Adner, Mikael; Cardell, Lars-Olaf (2005). "Psoriasin, one of several new proteins identified in nasal lavage fluid from allergic and non-allergic individuals using 2-dimensional gel electrophoresis and mass spectrometry". Respiratory Research. 6 (1): 118. doi:10.1186/1465-9921-6-118. PMC 1282590. PMID 16236163.
- ↑ Clerk, Angela; Cullingford, Timothy E.; Kemp, Timothy J.; Kennedy, Robert A.; Sugden, Peter H. (2005). "Regulation of gene and protein expression in cardiac myocyte hypertrophy and apoptosis". Advances in Enzyme Regulation. 45 (1): 94–111. doi:10.1016/j.advenzreg.2005.02.007. PMID 16084574.
- ↑ Schaller, A.; Troller, R.; Molina, D.; Gallati, S.; Aebi, C.; Stutzmann Meier, P. (January 2006). "Rapid typing of Moraxella catarrhalis subpopulations based on outer membrane proteins using mass spectrometry". Proteomics. 6 (1): 172–180. doi:10.1002/pmic.200500086. PMID 16317771. S2CID 1626277.
- ↑ Stasyk, T.; Morandell, S.; Bakry, R.; Feuerstein, I.; Huck, C. W.; Stecher, G.; Bonn, G. K.; Huber, L. A. (July 2005). "Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining". Electrophoresis. 26 (14): 2850–2854. doi:10.1002/elps.200500026. PMID 15966015. S2CID 21102274.
- ↑ Berger, K.; Wissmann, D.; Ihling, C.; Kalkhof, S.; Beck-Sickinger, A.; Sinz, A.; Paschke, R.; Führer, D. (November 2004). "Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain". Molecular and Cellular Endocrinology. 227 (1–2): 21–30. doi:10.1016/j.mce.2004.08.001. PMID 15501581. S2CID 1622208.
- ↑ Görg, A.; Weiss, W.; Dunn, M. J. (December 2004). "Current two-dimensional electrophoresis technology for proteomics". Proteomics. 4 (12): 3665–3685. doi:10.1002/pmic.200401031. PMID 15543535. S2CID 28594824.
- ↑ Smejkal, G. B.; Robinson, M. H.; Lazarev, A. (August 2004). "Comparison of fluorescent stains: Relative photostability and differential staining of proteins in two-dimensional gels". Electrophoresis. 25 (15): 2511–2519. doi:10.1002/elps.200406005. PMID 15300770. S2CID 1163843.
- ↑ Junca, H.; Plumeier, I.; Hecht, H. J. R.; Pieper, D. H. (December 2004). "Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment". Microbiology. 150 (12): 4181–4187. doi:10.1099/mic.0.27451-0. PMID 15583170.
- ↑ Tang, H. Y.; Speicher, D. W. (June 2005). "Complex proteome prefractionation using microscale solution isoelectrofocusing". Expert Review of Proteomics. 2 (3): 295–306. doi:10.1586/14789450.2.3.295. PMID 16000077. S2CID 38064911.
- ↑ Piette, André; Derouaux, Adeline; Gerkens, Pascal; Noens, Elke E. E.; Mazzucchelli, Gabriel; Vion, Sébastien; Koerten, Henk K.; Titgemeyer, Fritz; De Pauw, Edwin; Leprince, Pierre; van Wezel, Gilles P.; Galleni, Moreno; Rigali, Sébastien (2005). "From Dormant to Germinating Spores of Streptomyces coelicolor A3(2): New Perspectives from the crp Null Mutant". Journal of Proteome Research. 4 (5): 1699–1708. doi:10.1021/pr050155b. hdl:1887/3239397. PMID 16212423.
- ↑ Quaglino, Daniela; Boraldi, Federica; Bini, Luca; Volpi, Nicola (April 2004). "The Protein Profile of Fibroblasts: The Role of Proteomics". Current Proteomics. 1 (2): 167. doi:10.2174/1570164043379424.
- ↑ Hjernø, K.; Alm, R.; Canbäck, B. R.; Matthiesen, R.; Trajkovski, K.; Björk, L.; Roepstorff, P.; Emanuelsson, C. (2006). "Down-regulation of the strawberry Bet v 1-homologous allergen in concert with the flavonoid biosynthesis pathway in colorless strawberry mutant". Proteomics. 6 (5): 1574–1587. doi:10.1002/pmic.200500469. PMID 16447153. S2CID 29423198.
- ↑ Gerber, Isak B.; Laukens, Kris; Witters, Erwin; Dubery, Ian A. (2006). "Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells". Plant Physiology and Biochemistry. 44 (5–6): 369–379. doi:10.1016/j.plaphy.2006.06.015. PMID 16889970.
- ↑ Chevallet, M.; Diemer, H. L. N.; Luche, S.; Van Dorsselaer, A.; Rabilloud, T.; Leize-Wagner, E. (2006). "Improved mass spectrometry compatibility is afforded by ammoniacal silver staining". Proteomics. 6 (8): 2350–2354. arXiv:q-bio/0611083. Bibcode:2006q.bio....11083C. doi:10.1002/pmic.200500567. PMC 2797540. PMID 16548061.
- ↑ Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian (2007). Imhof, Axel (ed.). "Protein Buffering in Model Systems and in Whole Human Saliva". PLoS ONE. 2 (2): e263. Bibcode:2007PLoSO...2..263L. doi:10.1371/journal.pone.0000263. PMC 1803027. PMID 17327922. Open access icon
- ↑ "Archived copy". Archived from the original on 2007-05-15. Retrieved 2007-04-26.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ Bannwarth, W.; Schmidt, D.; Stallard, R. L.; Hornung, C.; Knorr, R.; Müller, F. (December 1988). "Bathophenanthroline-ruthenium(II) complexes as non-radioactive labels for oligonucleotides which can be measured by time-resolved fluorescence techniques". Helvetica Chimica Acta. 71 (8): 2085. doi:10.1002/hlca.19880710826.
- ↑ Patton, W.F.; Lam, L.; Su, Q.; Lui, M.; Erdjumentbromage, H.; Tempst, P. (1994). "Metal Chelates as Reversible Stains for Detection of Electroblotted Proteins: Application to Protein Microsequencing and Immunoblotting". Analytical Biochemistry. 220 (2). Elsevier BV: 324–335. doi:10.1006/abio.1994.1345. ISSN 0003-2697. PMID 7526738. S2CID 24405621.
- ↑ Lim, Mark J.; Patton, Wayne F.; Lopez, Mary F.; Spofford, Kimberley H.; Shojaee, Negin; Shepro, David (1997). "A Luminescent Europium Complex for the Sensitive Detection of Proteins and Nucleic Acids Immobilized on Membrane Supports". Analytical Biochemistry. 245 (2). Elsevier BV: 184–195. doi:10.1006/abio.1996.9961. ISSN 0003-2697. PMID 9056210.
- ↑ 21.0 21.1 Berggren, Kiera; Steinberg, Thomas H.; Lauber, Wendy M.; Carroll, James A.; Lopez, Mary F.; Chernokalskaya, Elena; Zieske, Lynn; Diwu, Zhenjun; Haugland, Richard P.; Patton, Wayne F. (1999). "A Luminescent Ruthenium Complex for Ultrasensitive Detection of Proteins Immobilized on Membrane Supports". Analytical Biochemistry. 276 (2). Elsevier BV: 129–143. doi:10.1006/abio.1999.4364. ISSN 0003-2697. PMID 10603235.
- ↑ Steinberg, Thomas H.; Chernokalskaya, Elena; Berggren, Kiera; Lopez, Mary F.; Diwu, Zhenjun; Haugland, Richard P.; Patton, Wayne F. (2000-02-01). "Ultrasensitive fluorescence protein detection in isoelectric focusing gels using a ruthenium metal chelate stain". Electrophoresis. 21 (3). Wiley: 486–496. doi:10.1002/(sici)1522-2683(20000201)21:3<486::aid-elps486>3.0.co;2-q. ISSN 0173-0835. PMID 10726748. S2CID 36787237.
- ↑ "Proteome - Full Text DOI 10.1007/S102160000002". doi:10.1007/S102160000002. S2CID 98713308. Archived from the original on 2011-05-29. Retrieved 2007-04-26.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Berggren, Kiera N.; Schulenberg, Birte; Lopez, Mary F.; Steinberg, Thomas H.; Bogdanova, Alla; Smejkal, Gary; Wang, Annie; Patton, Wayne F. (2002). "An improved formulation of SYPRO Ruby protein gel stain: Comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation". Proteomics. 2 (5). Wiley: 486–498. doi:10.1002/1615-9861(200205)2:5<486::aid-prot486>3.0.co;2-x. ISSN 1615-9853. PMID 11987123. S2CID 23902055.
- ↑ 25.0 25.1 Lamanda, A.; Zahn, A.; Röder, D.; Langen, H. (March 2004). "Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution". Proteomics. 4 (3): 599–608. doi:10.1002/pmic.200300587. PMID 14997483. S2CID 26442102.
- ↑ Babak, Maria V.; Le Faouder, Pauline; Trivelli, Xavier; Venkatesan, Gopalakrishnan; Bezzubov, Stanislav I.; Kajjout, Mohammed; Gushchin, Artem L.; Hanif, Muhammad; Poizat, Olivier; Vezin, Hervé; Rolando, Christian (2020-03-17). "Heteroleptic Ruthenium(II) Complexes with Bathophenanthroline and Bathophenanthroline Disulfonate Disodium Salt as Fluorescent Dyes for In-Gel Protein Staining". Inorganic Chemistry. 59 (7). American Chemical Society (ACS): 4527–4535. doi:10.1021/acs.inorgchem.9b03679. ISSN 0020-1669. PMID 32181663. S2CID 212739460.
External links
More information about ruthenium(II) tris(bathophenanthroline disulfonate) staining can be found on [1]