Prouhet–Thue–Morse constant

From The Right Wiki
(Redirected from Thue–Morse constant)
Jump to navigationJump to search

In mathematics, the Prouhet–Thue–Morse constant, named for Eugène Prouhet [fr], Axel Thue, and Marston Morse, is the number—denoted by τ—whose binary expansion 0.01101001100101101001011001101001... is given by the Prouhet–Thue–Morse sequence. That is,

τ=n=0tn2n+1=0.412454033640

where tn is the nth element of the Prouhet–Thue–Morse sequence.

Other representations

The Prouhet–Thue–Morse constant can also be expressed, without using tn , as an infinite product,[1]

τ=14[2n=0(1122n)]

This formula is obtained by substituting x = 1/2 into generating series for tn

F(x)=n=0(1)tnxn=n=0(1x2n)

The continued fraction expansion of the constant is [0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …] (sequence A014572 in the OEIS) Yann Bugeaud and Martine Queffélec showed that infinitely many partial quotients of this continued fraction are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.[2]

Transcendence

The Prouhet–Thue–Morse constant was shown to be transcendental by Kurt Mahler in 1929.[3] He also showed that the number

i=0tnαn

is also transcendental for any algebraic number α, where 0 < |α| < 1. Yann Bugaeud proved that the Prouhet–Thue–Morse constant has an irrationality measure of 2.[4]

Appearances

The Prouhet–Thue–Morse constant appears in probability. If a language L over {0, 1} is chosen at random, by flipping a fair coin to decide whether each word w is in L, the probability that it contains at least one word for each possible length is [5]

p=n=0(1122n)=n=0(1)tn2n+1=24τ=0.35018386544

See also

Notes

  1. Weisstein, Eric W. "Thue-Morse Constant". MathWorld.
  2. Bugeaud, Yann; Queffélec, Martine (2013). "On Rational Approximation of the Binary Thue-Morse-Mahler Number". Journal of Integer Sequences. 16 (13.2.3).
  3. Mahler, Kurt (1929). "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen". Math. Annalen. 101: 342–366. doi:10.1007/bf01454845. JFM 55.0115.01. S2CID 120549929.
  4. Bugaeud, Yann (2011). "On the rational approximation to the Thue–Morse–Mahler numbers". Annales de l'Institut Fourier. 61 (5): 2065–2076. doi:10.5802/aif.2666.
  5. Allouche, Jean-Paul; Shallit, Jeffrey (1999). "The Ubiquitous Prouhet–Thue–Morse Sequence". Discrete Mathematics and Theoretical Computer Science: 11.

References

External links