Earth system governance

From The Right Wiki
Jump to navigationJump to search

File:Understanding and analysing transformations towards sustainability.jpg
Applying the existing earth system governance (ESG) framework[1] to the challenge of understanding and analysing transformations towards sustainability.[2]

Earth system governance (or earth systems governance) is a broad area of scholarly inquiry that builds on earlier notions of environmental policy and nature conservation, but puts these into the broader context of human-induced transformations of the entire earth system. The integrative paradigm of earth system governance (ESG) has evolved into an active research area that brings together a variety of disciplines including political science, sociology, economics, ecology, policy studies, geography, sustainability science, and law.[3] ESG research can be carried out under a conceptual framework of five analytical problems which are all highly interlinked.[4][1] These analytical problems are "problems of the overall architecture of ESG, of agency beyond the state and of the state, of the adaptiveness of governance mechanisms and processes, of their accountability and legitimacy and of modes of allocation and access in ESG".[4] They share at least four cross-cutting themes which are "power, knowledge, norms and scale". ESG is not simply about the global level but all levels are relevant. Therefore, researchers study sustainability challenges at local, national and global levels. The ESG research community focuses on the study of formal rules and institutions, which include laws, public regulations and policies set by national or local governments and international organizations to address global and local sustainability problems. The network also examines informal rules and practices, such as unwritten norms and societal behaviors. Additionally, the community explores actor networks, such as relationships and interactions among various stakeholders such as governments, NGOs, and civil society.[5] Example applications of ESG include topics around planetary justice, climate governance, ocean governance. For example, in the context of ocean governance, research in ESG helps to address governance-related needs of the UN Decade of Ocean Science for Sustainable Development.[6] There are fundamental research questions regarding ocean science for sustainable development, namely "who gets what?” (justice and allocation), "who gets to decide?” (democracy and power), "how are current systems maintained?” (architecture and agency), and "how do these systems change?” (in the present: agency, adaptiveness and reflexivity; and in the future: anticipation and imagination).[7] Another example are international treaties: Social science research on ESG can offer insights on the factors that have promoted successful negotiation, design, and implementation of international environmental agreements such as the High Seas Treaty.[8] Hundreds of scholars who are interested in ESG research have joined forces within the Earth System Governance Project, a large research network and interdisciplinary social science research alliance which began in 2009.[9]

Definition

The concept of earth system governance (ESG) is defined in the 2009 Science and Implementation Plan of the Earth System Governance Project as: "the interrelated and increasingly integrated system of formal and informal rules, rule-making systems, and actor-networks at all levels of human society (from local to global) that are set up to steer societies towards preventing, mitigating, and adapting to global and local environmental change and, in particular, earth system transformation, within the normative context of sustainable development."[1]: 22  A simpler version of the same definition is: Earth system governance is the combination of various rules and efforts from actors at all levels of society, from local to global, aimed at guiding actions to prevent, reduce, and adapt to environmental changes. ESG is about the "societal steering of human activities regarding the long-term stability of geobiophysical systems" and "global stewardship for the planet based on non-hierarchical processes of cooperation and coordination at multiple levels".[10]: 285  ESG is a subfield of earth system sciences analyzed from a social sciences perspective.[11] Earth system science assumes a holistic view of the dynamic interaction between the Earth's spheres and their many constituent subsystems fluxes and processes, the resulting spatial organization and time evolution of these systems, and their variability, stability and instability.[12][13][14] The concept of ESG also has its conceptual boundaries: "Questions of international security, global communication, trade regulation, terrorism, or human rights, for instance, are less studied within the earth system governance research community."[15]

Development

The new paradigm of earth system governance was originally developed in the Netherlands by Professor Frank Biermann in his inaugural lecture at the VU University Amsterdam, which was published later in 2007.[16] Based on this pioneering contribution, Biermann was invited by the International Human Dimensions Programme on Global Environmental Change to develop a long-term comprehensive international program in this field, which became in 2009 the global Earth System Governance Project (ESG Project). The ESG Project is a network of researchers. It produced the first science and implementation plan for ESG research in 2009.[1][4] This provided a framework for research activities of ESG scholars during 2009 to 2018. It was followed by a second Science and Implementation Plan in 2018 which is meant to guide the research activities from 2018 onwards.[5]

Conceptual framework of analytical problems

ESG research can be carried out under a conceptual framework of five analytical problems which are all highly interlinked.[4] These analytical problems are "problems of the overall architecture of ESG, of agency beyond the state and of the state, of the adaptiveness of governance mechanisms and processes, of their accountability and legitimacy and of modes of allocation and access in ESG".[4] The table below shows these five research activities and the main research questions for each of the analytical problems.[1] At the center of the ESG framework are particular problem domains (i.e. energy, food, water, climate, and economic systems), which are likely to be the focus of efforts to bring about transformations towards sustainability.[2]

Conceptual framework of five analytical problems for research in ESG (all starting with the letter A)[1]
Analytical problem Activities of researchers Examples for main research questions
Architecture of governance To analyze the emergence, design and effectiveness of governance systems as well as the overall integration of global, regional, national and local governance.[15] How do environmental institutions perform within larger governance structures? What environmental impacts arise from non-environmental governance systems? What are the norms of ESG?[17]
Agents of governance To investigate the diverse agents beyond national governments, such as businesses, non-profit organizations, or cities,[18] studying their roles, responsibilities, authority, and impact.[19] Who are the agents of ESG? How do they exercise their roles, and how can their relevance be evaluated?
Adaptiveness To analyze how long-term stability can best be balanced with flexibility to respond to new developments.[20] This research explores the politics and processes that enhance adaptiveness in governance. What attributes of governance systems promote adaptiveness? How does adaptiveness influence governance?
Accountability and legitimacy To focus on questions of accountability,[21] legitimacy, transparency,[22] and the democratic quality of governance.[23] What are the sources of accountability, legitimacy and democratic governance? How do they affect governance performance? What designs can best balance interests and perspectives?
Allocation and Access To study the distribution of resources, raising issues of planetary justice.[24] How can interdisciplinary definitions of allocation and access be developed?[25] What principles underlie planetary justice, and how does planetary justice align with governance effectiveness?

The first Science and Implementation Plan from 2009 emphasized four cross-cutting themes that were deemed crucial for understanding these problems: power, knowledge, norms, and scale.[1] It also promoted focused case studies on the global water, food, climate, and economic systems, integrating here analyses of governance architecture, agents, adaptiveness, accountability, and allocation. The second Science and Implementation Plan from 2018 has expanded the original framework of the "5 A’s" to pair them with novel concepts that have become more prominent in the community. This resulted in the following five sets of research lenses:[5]

  1. Architecture and agency
  2. Democracy and power
  3. Justice and allocation
  4. Anticipation and imagination
  5. Adaptiveness and reflexivity

Those research lenses are embedded in four contextual conditions: Transformations, inequality, anthropocene, and diversity.[5] The ESG research community focuses on the study of formal rules and institutions, which include laws, public regulations and policies set by national or local governments and international organizations to address global and local sustainability problems. The network also examines informal rules and practices, such as unwritten norms and societal behaviors. Additionally, the community explores actor networks, such as relationships and interactions among various stakeholders such as governments, NGOs, and civil society.[5] When scholars conduct research in ESG they theorize about it as analytical practice (explaining current politics), as normative critique (a critique of current systems of governance), and as transformative visioning.[10]: 285 

Analytical problems

Architectures

Architectures of ESG has been defined as "the overarching system of public and private institutions, principles, norms, regulations, decision-making procedures and organizations that are valid or active in a given area of global governance".[15]: 4  It is the "macro-level of governance", or a "bird’s-eye view on the global governance landscape". Building blocks of architectures of global governance include intergovernmental institutions, international bureaucracies, and non-state, transnational institutions and networks.[15]: 24  The structural features of global governance architectures can be investigated at micro, meso and macro levels.[15]: 24  The micro level includes "dyadic interlinkages between institutions". The meso level includes "regime complexes of loosely coupled institutions". Finally, the macro level is about whole architectures. There are also many areas of voids in the governance architecture, i.e. instances of non-governance. For example, there is no global treaty on deforestation, no comprehensive laws or treaties in relationship to the atmosphere, the Arctic region, and ocean acidification.[15]: 20  ESG is not simply about the global level but all levels are relevant.[15]: 5  Therefore, researchers study sustainability challenges at local, national and global levels. They look into how local communities manage natural resources and respond to sustainability changes. At the national level, ESG researchers examine how governments and other actors develop and implement policies to address sustainability challenges. They also investigate international agreements, the role of global organizations such as the United Nations and transnational institutions in governing earth systems. By integrating research across all these scales, ESG researchers seek to understand the complexities of sustainability governance and develop actionable solutions that are effective and fair at all levels of society.[citation needed]

Agency

When ESG researchers investigate agency they ask: "who are the agents of ESG, how do they become authoritative, and to what effect?"[26] Or in other words "who governs for whom and how and to what effect?". Researchers on agency in ESG thus investigate the "multiple ways in which actors acquire authority to affect the outcomes of ESG".[26] The Earth System Governance Project's Science Plan explains the difference between actors and agents in ESG.[1] Agents are more empowered than actors: "Agents are authoritative actors, where authority is understood as the ability to exercise power with legitimacy".[26] For this reason, agency is about "a particular relationship between actors and those whom they seek to govern".[26] Categories of agents include states (or countries), businesses and civil society but these categories overlap and are not uniform.

Adaptiveness

The understanding of adaptiveness in the ESG context is for it to be "an umbrella term for a set of related concepts – vulnerability, resilience, adaptation, robustness, adaptive capacity, social learning and so on – to describe changes made by social groups in response to, or in anticipation of, challenges created through environmental change".[1]: 45 [27] Subsequently, ESG researchers have been investigating questions such as "what are the politics of adaptiveness? Which governance processes foster adaptiveness? What attributes of governance systems enhance capacities to adapt? How, when, and why does adaptiveness influence earth system governance?".[27]

Justice and allocation

Planetary justice

Planetary justice encompasses traditional concerns of environmental justice but foregrounds that the entire human and non-human world is now at stake, not merely a locality.[28] It is concerned with justice among humans as well as between humans and the natural world.[28] As early as 1972 scholars had called for planetary justice, and more recently (in 2006), the term has been used to refer to global justice from a non-Western philosophical perspective.[28] Scholars are now placing the justice discourse in the broader debate on planetary stewardship, earth system transformation and ESG.[28] Planetary justice is a system designed to secure the integrity of the planetary system as well as universal protection of basic human dignity for all people. It requires addressing extreme concentrations of wealth in industrialized and middle-income countries and international redistributions of wealth. There are allocation challenges, both within and between countries. To address these challenges it is critical to realize pro-poor planetary justice.[29] Planetary justice cannot be a debate among academics and activists in the global North alone. For the ideals of planetary justice to be achieved, these challenges must be linked to the lives and life worlds of the poorest and most marginalized people of the world.[29]

Approaches for ESG and planetary stewardship

There are five dominant approaches to ESG when viewed together with planetary stewardship: market liberal, bioenvironmentalist, ecomodernist, institutionalist, and social green. All of these approaches to planetary stewardship and ESG are not yet apt at realizing a pro-poor vision of justice. They cannot handle the complex causes of planetary crisis, including socioeconomic inequality and social injustice:[29]

  • A market liberal approach builds on neoclassical economics and the assumption of individual rational behavior to argue that economic growth and higher incomes are essential for effective planetary stewardship.
  • A bioenvironmentalist approach focuses on the constraints of biological limits, or the carrying capacity of the planet. Accordingly, bio-environmentalists see population pressure and overconsumption of natural resources as major causes of environmental degradation.
  • An ecomodernist approach emphasizes the need to tap into the "power of human ingenuity and creativity" for managing planetary problems such as climate change. Justice—at international and local levels—is not a core consideration for ecomodernists.
  • An institutionalist approach seeks to foster interstate cooperation in pursuit of planetary stewardship. Many institutionalist research programs remain focused on the goal of effective protection of the global environment—and not on increasing justice at the same time.
  • A social green approach sees planetary degradation as inseparable from questions of social, economic, and political inequalities.

Scholars have argued that planetary justice requires prioritizing poor people's interests within planetary stewardship.[29]

Contextual conditions

ESG research takes place in four contextual conditions: Transformations, inequality, anthropocene, and diversity.[5]

Transformations

Transformations have been defined as "shifts that involve fundamental changes in structural, functional, relational and cognitive dimensions of linked socio-technical-ecological systems".[30] Examples include climate change, economic globalization, and digitization. Very often, "transformations imply changes in power relations (e.g. challenging, disrupting or entrenching), and thus are deeply contested, political phenomena".[30] A variety of conceptual approaches have been developed to understand and analyse societal transition or transformation processes, including: socio-technical transitions, social-ecological systems, sustainability pathways, and transformative adaptation.[2] The ESG framework can be used as a lens for understanding and analysing transformations. It is a high-level framework for thinking about governance, and does not give specific guidance on processes of transformation, but is flexible enough to accommodate different conceptual approaches that might be applied by different scholars.[2] By using this framework, ESG researchers can explore the governance and politics of transformations towards sustainability by applying a conceptual lens that takes a political perspective of governance for sustainability.[2]

Anthropocene

The Anthropocene is a now rejected proposal for the name of a geological epoch that would follow the Holocene, dating from the commencement of significant human impact on Earth up to the present day. It was rejected in 2024 by the International Commission on Stratigraphy in terms of being a defined geologic period.[31] The impacts of humans affect Earth's oceans, geology, geomorphology, landscape, limnology, hydrology, ecosystems and climate.[32][33] The effects of human activities on Earth can be seen for example in biodiversity loss and climate change. Various start dates for the Anthropocene have been proposed, ranging from the beginning of the Neolithic Revolution (12,000–15,000 years ago), to as recently as the 1960s. The biologist Eugene F. Stoermer is credited with first coining and using the term anthropocene informally in the 1980s; Paul J. Crutzen re-invented and popularized the term.[34] However, in 2024 the International Commission on Stratigraphy (ICS) and the International Union of Geological Sciences (IUGS) rejected the Anthropocene Epoch proposal for inclusion in the Geologic Time Scale.[35][36][37] The Anthropocene Working Group (AWG) of the Subcommission on Quaternary Stratigraphy (SQS) of the ICS voted in April 2016 to proceed towards a formal golden spike (GSSP) proposal to define the Anthropocene epoch in the geologic time scale. The group presented the proposal to the International Geological Congress in August 2016.[38] In May 2019, the AWG voted in favour of submitting a formal proposal to the ICS by 2021.[39] The proposal located potential stratigraphic markers to the mid-20th century.[40][39][41] This time period coincides with the start of the Great Acceleration, a post-World War II time period during which global population growth, pollution and exploitation of natural resources have all increased at a dramatic rate.[42] The Atomic Age also started around the mid-20th century, when the risks of nuclear wars, nuclear terrorism and nuclear accidents increased. Twelve candidate sites were selected for the GSSP; the sediments of Crawford Lake, Canada were finally proposed, in July 2023, to mark the lower boundary of the Anthropocene, starting with the Crawfordian stage/age in 1950.[43][44]

In March 2024, after 15 years of deliberation, the Anthropocene Epoch proposal of the AWG was voted down by a wide margin by the SQS, owing largely to its shallow sedimentary record and extremely recent proposed start date.[45][46] The ICS and the IUGS later formally confirmed, by a near unanimous vote, the rejection of the AWG's Anthropocene Epoch proposal for inclusion in the Geologic Time Scale.[35][36][37] The IUGS statement on the rejection concluded: "Despite its rejection as a formal unit of the Geologic Time Scale, Anthropocene will nevertheless continue to be used not only by Earth and environmental scientists, but also by social scientists, politicians and economists, as well as by the public at large. It will remain an invaluable descriptor of human impact on the Earth system."[37]

Researchers and networks

Many scholars have applied the ESG framework in their research.[47] Examples include the following scholars who are also co-founders of the ESG Project: Frank Biermann, Michele Betsill,[19] John Dryzek,[23] Norichika Kanie and Lennart Olsson.[48] In addition, ESG scholars who have co-authored the ESG Project's first science and implementation plan in 2009 include for example:[1] Joyeeta Gupta,[25] Louis Lebel,[25] Diana Liverman, Heike Schroeder, and Bernd Siebenhüner.[20] Other notable scholars in ESG are for example Peter M. Haas, Chris Gordon, Aarti Gupta,[22] Louis J. Kotzé,[17] James Meadowcroft, Chukwumerije Okereke, Asa Persson, Oran R. Young, Fariborz Zelli. 557 scholars are formally registered as members of the ESG Project (as of 2024).[49]: 11 

Earth System Governance Project

File:Frank Biermann opening the 2018 Utrecht Conference on Earth System Governance.jpg
Frank Biermann opening the 2018 Utrecht Conference on Earth System Governance[50]
File:Logo Earth System Governance Project.png

The Earth System Governance Project (or ESG Project in short) is a research network that builds on the work from about a dozen research centers and hundreds of researchers studying earth system governance. It is a long-term, interdisciplinary social science research alliance. Its origins are an international program called the International Human Dimensions Programme on Global Environmental Change.[51] The ESG Project started in January 2009.[51] Over time, it has evolved into a broader research alliance that builds on an international network of research centers, lead faculty and research fellows. It is now the largest social science research network in the area of governance and global environmental change.[52]

Utrecht University in the Netherlands has hosted the secretariat, called International Project Office, from 2019 to 2024.[53][54] Previously the secretariat was at United Nations University in Bonn, Germany (from 2009 to 2012) and at Lund University, Sweden (from 2012 to 2018).

Critique

The idea of earth system governance (ESG) has been criticized for being too top-down, for placing too much emphasis on global governance structures. According to Mike Hulme, ESG represents an attempt to "geopolitically engineer" our way out of the climate crisis.[55] He questions whether the climate is governable and argues that it is way too optimistic and even hubristic to attempt to control the global climate by universal governance regimes.[55] Others regard this particular interpretation of the ESG concept as being too narrow and misleading.[56] Andy Stirling criticized the ESG concept by saying: "No matter how much a governance model might emphasize 'polycentric' co-ordination (rather than top-down hierarchy), if it remains subordinated to a particular agency and specific ends, then the process is equally about control."[57] Ariel Salleh compared ESG with a "proto bio-political regime".[58] She also stated that "What is minimized in the ESG analysis are major historical tensions between capital and labor, core and periphery, human production and natural reproduction". On the other hand, political scientist Frank Biermann from Utrecht University responded to that criticism by saying that there has been "a misunderstanding that this community would study only global institutions" due to the wording of earth system in the term.[10]: 291  Another line of criticism is to link "earth system governance research with dangers of universal, Northern-based intellectual dominance that marginalizes different epistemologies and in particular actors from the Global South".[10]: 291  On the other hand, Frank Biermann pointed out that "Much research on earth system governance has directly criticized ecomodernism, technocracy and postcolonialism, for instance by prioritizing work on "planetary justice", epistemic diversity, decolonializing Western science, or by engaging with ecosocialist and other progressive lines of thinking."[10]: 291 

Example applications

Complex and global challenges that ESG scholars investigate include for example as "ocean acidification, land use change, food system disruptions, climate change, environment-induced migration, species extinction, changing regional water cycles, as well as more traditional environmental concerns".[10]: 287 

Earth system law

The concept of earth system law is still in its infancy (as per 2021). It is a sub-discipline of ESG, itself a subfield of earth system sciences analyzed from a social sciences perspective.[11] The definition of earth system law is "an innovative legal imaginary that is rooted in the Anthropocene's planetary context and its perceived socio-ecological crisis".[59] However, a fuller determination of the precise content, purpose, meaning, and scope of earth system law remains a work in progress.[60] Earth system law is intended to be a more generically applicable framework that spans the entire spectrum of law that is relevant for responding to earth system transformation. Researchers are now looking into questions around the understanding of earth system law, its form and content, as well as its ontological and epistemological orientation.[60] Building on extant ESG research, earth system law challenges the conception that legal phenomena concerned with mediating the relationship between humans and the environment are to be categorized as environmental laws. Earth system law has the potential to transcend the shortcomings of environmental law, in particular its insufficient understanding and capturing of the complex relations between, and within, social, technical and natural systems.[61]

Ocean governance

UN Decade of Ocean Science for Sustainable Development

The UN Decade of Ocean Science for Sustainable Development (UNDOS) is a United Nations Decade that runs from 2021 to 2030, with a vision of "the science we need for the ocean we want".[62][63] UNDOS offers a framework to strengthen connections and weave partnerships between all communities working to study, conserve, and sustainably use the ocean and its resources. The Decade will boost scientific research in this area.[7] ESG research in relationship to oceans tackles fundamental questions of "who gets what?” (justice and allocation), "who gets to decide?” (democracy and power), "how are current systems maintained?” (architecture and agency), and "how do these systems change?” (in the present: agency, adaptiveness and reflexivity; and in the future: anticipation and imagination).[7] Scholars of ESG say that their research is instrumental in addressing governance-related needs of UNDOS.[6] First, it can identify salient frames for ocean problems that trigger policy action. Second, it can inform stakeholder involvement by mapping powerful and marginalized interests and suggesting pathways towards more inclusive participation. Third, it can support viable and effective ocean solutions based on insights into political support coalitions and governance design.[6] Mainstreaming of governance research into ocean science has also been recommended: The ESG community can facilitate this mainstreaming by enhancing knowledge cumulation around ocean issues within the network; engaging more strongly in the production of actionable and action-oriented knowledge; and seeking integration into inter- and transdisciplinary ocean research.[6] Sub-topics where ESG with regards to ocean governance can be applied are for example governance issues around deep sea mining,[64] ocean acidification,[65] marine biodiversity.[66]

High Seas Treaty

There is the expectation that a new agreement in ocean law that was reached in 2023 will constitute a major innovation in ESG, and could add more complexity and robustness to existing global ocean governance.[8] This agreement is called the High Seas Treaty or Global Ocean Treaty or the United Nations agreement on biodiversity beyond national jurisdiction (BBNJ Agreement). It was adopted on 19 June 2023 and is a legally binding instrument for the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction.[67][68] It falls under the United Nations Convention on the Law of the Sea (UNCLOS).[69] Social science research on ESG can offer insights on the factors that have promoted successful negotiation, design, and implementation of international environmental agreements that are similar to the High Seas Treaty.[8] Such findings relevant to those negotiations include regime theory, critical theory, science and technology studies, and coupled human and natural systems. The negotiations for such an agreement involved a large number of interested states and stakeholders with vested interests. This means that negotiators faced the classic dilemma of identifying obligations and commitments that are demanding enough to solve the problem but not so demanding that states will oppose their inclusion in an agreement or reject membership in an agreement that includes them.[8] Research on ESG helps to understand that negotiators for such a treaty must overcome three major challenges to reach meaningful agreement: (i) the politicization of science, which may inhibit agreement on whether to act, especially in a context of decision-making under uncertainty; (ii) institutional fragmentation and interplay, which make it challenging to add elements to an already crowded ocean governance space in ways that increase coherence and effectiveness; and (iii) the need for the new international legally binding instrument to respond to the complex set of multiple, multilevel, and systemic threats to marine biodiversity beyond national jurisdiction.[8]

Artificial intelligence and digitalization

Researchers are investigating the impacts, problems, and possibilities surrounding the use of certain emerging technologies—namely, artificial intelligence (AI) and digitalization—in activities relevant to ESG.[70] There is no uniformly techno-optimist or techno-pessimist orientation amongst ESG researchers. Nevertheless, concerns about technology course through the entire ESG agenda.[70] AI can be used to support public decision-making.[71] ESG researchers pointed out that those interested in adopting AI within their decision-making systems should first ask critical governance questions about the extent to which AI-informed decisions will be democratic, whether implementing such technology will contribute to north–south (in)equality, and the costs and benefits of involving private sector service providers in public sector operations.[70] Examples for such questions that ESG researchers explore include: "How to provide confidence that AI-informed decision-making is democratically sound? [...] What risk comes from government ownership and operation of AI-models and tools – is it any different to the existing management of public institutions and decisions? What are the risks and opportunities presented by AI to community engagement – how can we ensure that people remain involved in the decisions that affect them?"[71]

Climate governance

Climate governance, in particular research on climate policy, is another application of earth system governance.[72][1]

Climate governance is the diplomacy, mechanisms and response measures "aimed at steering social systems towards preventing, mitigating or adapting to the risks posed by climate change".[73] A definitive interpretation is complicated by the wide range of political and social science traditions (including comparative politics, political economy and multilevel governance) that are engaged in conceiving and analysing climate governance at different levels and across different arenas. In academia, climate governance has become the concern of geographers, anthropologists, economists and business studies scholars.[74] Climate governance – that is, effective management of the global climate system – is thus of vital importance. However, building effective collective mechanisms to govern impacts on the climate system at the planetary level presents particular challenges, e.g. the complexity of the relevant science and the progressive refinement of scientific knowledge about our global climate and planetary systems, and the challenge of communicating this knowledge to the general public and to policy makers. There is also the urgency of addressing this issue; the Intergovernmental Panel on Climate Change (IPCC) has underlined that the international community has a narrow window of opportunity to act to keep global temperature rise at safe levels. Modern international climate governance is organized around three pillars: mitigation, adaptation and means of implementation. Under each pillar are many issues and policies, illustrating the many ways climate change affects society.[75] In the first decade of the 21st century, a paradox had arisen between rising awareness about the causes and consequences of climate change and an increasing concern that the issues that surround it represent an intractable problem.[76] Initially, climate change was approached as a global issue, and climate governance sought to address it on the international stage. This took the form of Multilateral Environmental Agreements (MEAs), beginning with the United Nations Framework Convention on Climate Change (UNFCCC) in 1992. With the exception of the Kyoto Protocol, international agreements between nations had been largely ineffective in achieving legally binding emissions cuts.[77] With the end of the Kyoto Protocol's first commitment period in 2012, between 2013 and 2015 there was no legally binding global climate regime. This inertia on the international political stage contributed to alternative political narratives that called for more flexible, cost effective and participatory approaches to addressing the multifarious problems of climate change.[78] These narratives relate to the increasing diversity of methods that are being developed and deployed across the field of climate governance.[77][79]

In 2015, the Paris Agreement was signed, which is a legally binding international treaty on climate change. Its goal is to limit global warming to "well below 2", and preferably 1.5 degrees Celsius above preindustrial levels, and to achieve this goal, countries agree to peak greenhouse gas emissions as soon as possible to achieve a climate-neutral world by mid-century.[80] It commits all nations of the world to achieving a "balance between anthropogenic emissions by sources and removals of greenhouse gases in the second half of this century."[81] The Paris Agreement marked a new era for global energy and climate policies. Under its framework, each country submits its own nationally determined contribution (NDC) based on its particular situation. Though the Paris Agreement is legally binding, as an extension to the UNFCCC, the NDCs are not legally binding. This was because a legally binding treaty would have required ratification by the United States Senate, which was not supportive.[82]

See also

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Biermann, Frank, Michele M. Betsill, Joyeeta Gupta, Norichika Kanie, Louis Lebel, Diana Liverman, Heike Schroeder, and Bernd Siebenhüner, with contributions from Ken Conca, Leila da Costa Ferreira, Bharat Desai, Simon Tay, and Ruben Zondervan (2009) Earth System Governance: People, Places and the Planet. Science and Implementation Plan of the Earth System Governance Project. Earth System Governance Report 1 (first science plan), IHDP Report 20. Bonn, IHDP: The Earth System Governance Project.
  2. 2.0 2.1 2.2 2.3 2.4 Patterson, James; Schulz, Karsten; Vervoort, Joost; van der Hel, Sandra; Widerberg, Oscar; Adler, Carolina; Hurlbert, Margot; Anderton, Karen; Sethi, Mahendra; Barau, Aliyu (2017). "Exploring the governance and politics of transformations towards sustainability". Environmental Innovation and Societal Transitions. 24: 1–16. doi:10.1016/j.eist.2016.09.001. hdl:20.500.11850/121804. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  3. Kotzé, Louis J.; Kim, Rakhyun E. (2019). "Earth system law: The juridical dimensions of earth system governance". Earth System Governance. 1: 100003. Bibcode:2019ESGov...100003K. doi:10.1016/j.esg.2019.100003. ISSN 2589-8116.
  4. 4.0 4.1 4.2 4.3 4.4 Biermann, Frank; Betsill, Michele M; Vieira, Susana Camargo; Gupta, Joyeeta; Kanie, Norichika; Lebel, Louis; Liverman, Diana; Schroeder, Heike; Siebenhüner, Bernd; Yanda, Pius Z; Zondervan, Ruben (2010). "Navigating the anthropocene: the Earth System Governance Project strategy paper". Current Opinion in Environmental Sustainability. 2 (3): 202–208. Bibcode:2010COES....2..202B. doi:10.1016/j.cosust.2010.04.005.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Sarah Burch, Aarti Gupta, Cristina Yumie Aoki Inoue, Agni Kalfagianni, Åsa Persson (2018). Earth System Governance. Science and Implementation Plan of the Earth System Governance Project (second science plan). Utrecht, the Netherlands
  6. 6.0 6.1 6.2 6.3 Hofmann, Benjamin (2022). "Mainstreaming Earth System Governance into the UN Decade of Ocean Science for Sustainable Development". Earth System Governance. 12: 100139. doi:10.1016/j.esg.2022.100139. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  7. 7.0 7.1 7.2 Gonçalves, Leandra R.; May, Candace K.; Webster, D.G. (2022). "The decade of ocean science for sustainable development: What is at stake?". Earth System Governance. 14: 100155. doi:10.1016/j.esg.2022.100155.
  8. 8.0 8.1 8.2 8.3 8.4 De Santo, E.M.; Ásgeirsdóttir, á.; Barros-Platiau, A.; Biermann, F.; Dryzek, J.; Gonçalves, L.R.; Kim, R.E.; Mendenhall, E.; Mitchell, R.; Nyman, E.; Scobie, M.; Sun, K.; Tiller, R.; Webster, D.G.; Young, O. (2019). "Protecting biodiversity in areas beyond national jurisdiction: An earth system governance perspective". Earth System Governance. 2: 100029. doi:10.1016/j.esg.2019.100029. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  9. Earth System Governance Project (2022) Annual Report 2022 of Earth System Governance Project, University of Utrecht
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Biermann, Frank (2022). "Chapter 21: Earth system governance – World politics in the post-environmental age". In Harris, Paul G. (ed.). Routledge handbook of global environmental politics. Routledge handbooks (2nd ed.). London; New York, NY: Routledge, Taylor & Francis Group. doi:10.4324/9781003008873. ISBN 978-1-003-00887-3.
  11. 11.0 11.1 Petersmann, Marie-Catherine (2021). "Sympoietic thinking and Earth System Law: The Earth, its subjects and the law". Earth System Governance. 9: 100114. doi:10.1016/j.esg.2021.100114. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  12. Hergarten, Stefan (2002). Self-Organized Criticality in Earth Systems. Springer-Verlag. ISBN 9783540434528.
  13. Tsonis, Anastasios A.; Elsner, James B. (2007). Nonlinear Dynamics in Geosciences. Springer Science+Business Media. ISBN 9780387349183.
  14. Neugebauer, Horst J.; Simmer, Clemens (2003). Dynamics of Multiscale Earth Systems. Springer. ISBN 9783540417965.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 15.6 Biermann, Frank; Kim, Rakhyun E., eds. (7 May 2020). "Chapter 1: Setting the stage". Architectures of Earth System Governance: Institutional Complexity and Structural Transformation (1 ed.). Cambridge University Press. doi:10.1017/9781108784641. ISBN 978-1-108-78464-1.
  16. Biermann, Frank (2007). "'Earth system governance' as a crosscutting theme of global change research". Global Environmental Change. 17 (3–4): 326–337. Bibcode:2007GEC....17..326B. doi:10.1016/j.gloenvcha.2006.11.010.
  17. 17.0 17.1 Kotzé, Louis J.; Kim, Rakhyun E.; Blanchard, Catherine; Gellers, Joshua C.; Holley, Cameron; Petersmann, Marie; van Asselt, Harro; Biermann, Frank; Hurlbert, Margot (2022). "Earth system law: Exploring new frontiers in legal science". Earth System Governance. 11: 100126. Bibcode:2022ESGov..1100126K. doi:10.1016/j.esg.2021.100126.
  18. van der Heijden, Jeroen; Bulkeley, Harriet; Certomà, Chiara, eds. (2019). Urban Climate Politics: Agency and Empowerment (1 ed.). Cambridge University Press. doi:10.1017/9781108632157. ISBN 978-1-108-63215-7.
  19. 19.0 19.1 Betsill, Michele M.; Benney, Tabitha M.; Gerlak, Andrea K., eds. (2020). Agency in Earth System Governance (1 ed.). Cambridge University Press. doi:10.1017/9781108688277. ISBN 978-1-108-68827-7.
  20. 20.0 20.1 Siebenhüner, Bernd; Djalante, Riyanti, eds. (2021). Adaptiveness: Changing Earth System Governance (1 ed.). Cambridge University Press. doi:10.1017/9781108782180. ISBN 978-1-108-78218-0.
  21. Park, Susan; Kramarz, Teresa, eds. (2019). Global environmental governance and the accountability trap. Earth system governance. Cambridge, MA: The MIT Press. ISBN 978-0-262-03906-2.
  22. 22.0 22.1 Gupta, Aarti, ed. (2014). Transparency in global environmental governance: critical perspectives. Earth system governance: a core research project of the international human dimensions programme on global environmental change. Cambridge, MA: MIT Press. ISBN 978-0-262-02741-0.
  23. 23.0 23.1 Dryzek, John S.; Bowman, Quinlan; Kuyper, Jonathan; Pickering, Jonathan; Sass, Jensen; Stevenson, Hayley (31 July 2019). Deliberative Global Governance (1 ed.). Cambridge University Press. doi:10.1017/9781108762922. ISBN 978-1-108-76292-2.
  24. Biermann, Frank; Kalfagianni, Agni (2020). "Planetary justice: A research framework". Earth System Governance. 6: 100049. Bibcode:2020ESGov...600049B. doi:10.1016/j.esg.2020.100049.
  25. 25.0 25.1 25.2 Gupta, Joyeeta; Lebel, Louis (2020). "Access and allocation in earth system governance: lessons learnt in the context of the Sustainable Development Goals". International Environmental Agreements: Politics, Law and Economics. 20 (2): 393–410. Bibcode:2020IEAPL..20..393G. doi:10.1007/s10784-020-09486-4. ISSN 1567-9764.
  26. 26.0 26.1 26.2 26.3 Dellas, Eleni; Pattberg, Philipp; Betsill, Michele (2011). "Agency in earth system governance: refining a research agenda". International Environmental Agreements: Politics, Law and Economics. 11 (1): 85–98. doi:10.1007/s10784-011-9147-9. ISSN 1567-9764.
  27. 27.0 27.1 Djalante, Riyanti; Siebenhüner, Bernd; King, Julie P.; Jager, Nicolas W.; Lebel, Louis (2021), Siebenhüner, Bernd; Djalante, Riyanti (eds.), "On Adaptiveness: Changing Earth System Governance", Adaptiveness: Changing Earth System Governance (1 ed.), Cambridge University Press, pp. 1–25, doi:10.1017/9781108782180.003, ISBN 978-1-108-78218-0, retrieved 13 September 2024
  28. 28.0 28.1 28.2 28.3 Biermann, Frank; Dirth, Elizabeth; Kalfagianni, Agni (2020). "Planetary justice as a challenge for earth system governance: Editorial". Earth System Governance. 6: 100085. doi:10.1016/j.esg.2020.100085. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  29. 29.0 29.1 29.2 29.3 Kashwan, Prakash; Biermann, Frank; Gupta, Aarti; Okereke, Chukwumerije (2020). "Planetary justice: Prioritizing the poor in earth system governance". Earth System Governance. 6: 100075. Bibcode:2020ESGov...600075K. doi:10.1016/j.esg.2020.100075. PMC 7510448. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  30. 30.0 30.1 Burch, Sarah; Gupta, Aarti; Inoue, Cristina Y.A.; Kalfagianni, Agni; Persson, Åsa; Gerlak, Andrea K.; Ishii, Atsushi; Patterson, James; Pickering, Jonathan; Scobie, Michelle; Van der Heijden, Jeroen; Vervoort, Joost; Adler, Carolina; Bloomfield, Michael; Djalante, Riyanti (2019). "New directions in earth system governance research". Earth System Governance. 1: 100006. doi:10.1016/j.esg.2019.100006.
  31. Working Group on the ‘Anthropocene’ (26 March 2024). "Joint statement by the IUGS and ICS on the vote by the ICS Subcommission on Quaternary Stratigraphy". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy. Retrieved 3 December 2024.
  32. Waters, C.N.; et al. (8 January 2016). "The Anthropocene is functionally and stratigraphically distinct from the Holocene". Science. 351 (6269): aad2622. doi:10.1126/science.aad2622. PMID 26744408. S2CID 206642594.
  33. Edwards, Lucy E. (30 November 2015). "What is the Anthropocene?". Eos. Vol. 96. doi:10.1029/2015EO040297.
  34. Dawson, Ashley (2016). Extinction: A radical history. OR Books. p. 19. ISBN 978-1944869014.
  35. 35.0 35.1 "International Chronostratigraphic Chart". International Commission on Stratigraphy. Retrieved 7 April 2024.
  36. 36.0 36.1 "What is the Anthropocene? – current definition and status". quaternary.stratigraphy.org. Subcommission on Quaternary Stratigraphy, Working Group on the 'Anthropocene'. Retrieved 7 April 2024.
  37. 37.0 37.1 37.2 The Anthropocene: IUGS-ICS Statement. March 20, 2024. https://www.iugs.org/_files/ugd/f1fc07_ebe2e2b94c35491c8efe570cd2c5a1bf.pdf
  38. Carrington, Damian (29 August 2016). "The Anthropocene epoch: Scientists declare dawn of human-influenced age". The Guardian. Retrieved 29 August 2016.
  39. 39.0 39.1 Subramanian, Meera (21 May 2019). "Anthropocene now: Influential panel votes to recognize Earth's new epoch". Nature. doi:10.1038/d41586-019-01641-5. PMID 32433629. S2CID 182238145. Retrieved 5 June 2019.
  40. "Results of binding vote by AWG". Anthropocene Working Group. International Commission on Stratigraphy. 21 May 2019. Archived from the original on 5 June 2019.
  41. Meyer, Robinson (16 April 2019). "The cataclysmic break that (maybe) occurred in 1950". The Atlantic. Retrieved 5 June 2019.
  42. "The Anthropocene". The Geological Society.
  43. Waters, Colin N; Turner, Simon D; Zalasiewicz, Jan; Head, Martin J (April 2023). "Candidate sites and other reference sections for the Global boundary Stratotype Section and Point of the Anthropocene series". The Anthropocene Review. 10 (1): 3–24. Bibcode:2023AntRv..10....3W. doi:10.1177/20530196221136422.
  44. Voosen, Paul (11 July 2023). "Pond mud proposed as Anthropocene's 'golden spike,' defining human-altered geological age". Science. 381 (6654): 114–115. doi:10.1126/science.adj6978. Retrieved 23 April 2024.
  45. Zhong, Raymond (5 March 2024). "Are We in the 'Anthropocene,' the Human Age? Nope, Scientists Say". The New York Times. ISSN 0362-4331. Retrieved 5 March 2024.
  46. Zhong, Raymond (20 March 2024). "Geologists Make It Official: We're Not in an 'Anthropocene' Epoch". The New York Times. ISSN 0362-4331. Retrieved 19 April 2024.
  47. "Find an expert". Earth System Governance Project. Retrieved 8 October 2024.
  48. "History of the ESG Project". Earth System Governance Project. Retrieved 8 October 2024.
  49. Earth System Governance Project (2023) Annual Report 2023, Earth System Governance International Project Office at Copernicus Institute of Sustainable Development at Faculty of Geosciences, Utrecht University
  50. "2018 Utrecht Conference on Earth System Governance". Earth System Governance Project. Retrieved 22 July 2024.
  51. 51.0 51.1 Biermann, Frank, Michele M. Betsill, Joyeeta Gupta, Norichika Kanie, Louis Lebel, Diana Liverman, Heike Schroeder, and Bernd Siebenhüner, with contributions from Ken Conca, Leila da Costa Ferreira, Bharat Desai, Simon Tay, and Ruben Zondervan (2009) Earth System Governance: People, Places and the Planet. Science and Implementation Plan of the Earth System Governance Project. Earth System Governance Report 1, IHDP Report 20. Bonn, IHDP: The Earth System Governance Project.
  52. Dryzek, John S. (2016). "Institutions for the Anthropocene: Governance in a Changing Earth System". British Journal of Political Science. 46 (4): 937–956. doi:10.1017/S0007123414000453. ISSN 0007-1234.
  53. "International Project Office". Earth System Governance Project. Retrieved 18 July 2024.
  54. Earth System Governance Project (2022) Annual Report 2022 of Earth System Governance Project, University of Utrecht
  55. 55.0 55.1 Hulme, Mike (2008). "The Conquering of Climate: Discourses of Fear and Their Dissolution". The Geographical Journal. 174 (1): 5–16. Bibcode:2008GeogJ.174....5H. doi:10.1111/j.1475-4959.2008.00266.x. ISSN 0016-7398. JSTOR 30139401.
  56. Biermann, Frank (2014). Earth system governance: world politics in the anthropocene. Earth system governance : a core research project of the international human dimensions programme on global environmental change. Cambridge, Massachusetts: The MIT Press. ISBN 978-0-262-02822-6.
  57. Stirling, A. (2014) Emancipating Transformations: From controlling ‘the transition’ to culturing plural radical progress, STEPS Working Paper 64, Brighton: STEPS Centre
  58. Ariel Salleh (2013) The Idea of Earth System Governance. Unifying tool? Or hegemony for a new capitalist Landnahme? Working Paper der DFG-KollegforscherInnengruppe Postwachstumsgesellschaften, Nr. 10/2013, Jena
  59. Kim, Rakhyun E.; Kotzé, Louis J. (2021). "Planetary boundaries at the intersection of Earth system law, science and governance: A state‐of‐the‐art review". Review of European, Comparative & International Environmental Law. 30 (1): 3–15. doi:10.1111/reel.12383. ISSN 2050-0386.
  60. 60.0 60.1 Kim, Rakhyun E.; Blanchard, Catherine; Kotzé, Louis J. (2022). "Law, systems, and Planet Earth: Editorial". Earth System Governance. 11: 100127. doi:10.1016/j.esg.2021.100127.
  61. Mai, Laura; Boulot, Emille (2021). "Harnessing the transformative potential of Earth System Law: From theory to practice". Earth System Governance. 7: 100103. doi:10.1016/j.esg.2021.100103. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  62. "United Nations Decade of Ocean Science for Sustainable Development (2021-2030)". UNESCO Decades. Retrieved 26 August 2024.
  63. "Ocean Decade – The Science We Need for the Ocean We Want". Ocean Decade. 1 December 2023. Retrieved 26 August 2024.
  64. Kim, Rakhyun E. (2017). "Should deep seabed mining be allowed?". Marine Policy. 82: 134–137. doi:10.1016/j.marpol.2017.05.010.
  65. Kim, Rakhyun E. (2012). "Is a New Multilateral Environmental Agreement on Ocean Acidification Necessary?". Review of European Community & International Environmental Law. 21 (3): 243–258. doi:10.1111/reel.12000.x. ISSN 0962-8797.
  66. Kim, Rakhyun E. (2024). "The likely impact of the BBNJ Agreement on the architecture of ocean governance". Marine Policy. 165: 106190. doi:10.1016/j.marpol.2024.106190.
  67. "Statement attributable to the Spokesperson for the Secretary-General – on Int'l Legally Binding Instrument under the UN Convention on the Law of the Sea | United Nations Secretary-General". United Nations. Retrieved 29 May 2023.
  68. "Intergovernmental Conference on Marine Biodiversity of Areas Beyond National Jurisdiction |". United Nations. Retrieved 29 May 2023.
  69. "Protecting the ocean, time for action". oceans-and-fisheries.ec.europa.eu. 4 March 2023. Retrieved 29 May 2023.
  70. 70.0 70.1 70.2 Gellers, Joshua C. (2022). "Emerging technologies and earth system governance in the anthropocene: Editorial". Earth System Governance. 14: 100157. doi:10.1016/j.esg.2022.100157. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  71. 71.0 71.1 Bolton, Mitzi; Raven, Rob; Mintrom, Michael (2021). "Can AI transform public decision-making for sustainable development? An exploration of critical earth system governance questions". Earth System Governance. 9: 100116. doi:10.1016/j.esg.2021.100116.
  72. "Taskforce on Climate Governance Project". Earth System Governance. Retrieved 28 August 2024.
  73. Jagers, S.C.; Stripple, J. (2003). "Climate Governance beyond the State". Global Governance. 9 (3): 385–400. doi:10.1163/19426720-00903009.
  74. Bulkeley, H. (2010). "Climate Policy and Governance: an editorial essay". Wiley Interdisciplinary Reviews: Climate Change. 1 (3): 311–313. Bibcode:2010WIRCC...1..311B. doi:10.1002/wcc.1. S2CID 129109192.
  75. "Video #2 of 4: The Pillars of Climate Governance - Paris Knowledge Bridge: Unpacking International Climate Governance". enb.iisd.org. Retrieved 20 October 2022.
  76. Bulkeley,H., Newell, P. (2009). Governing Climate Change. New York: Routledge.{{cite book}}: CS1 maint: multiple names: authors list (link)
  77. 77.0 77.1 Andonova, L. B., Betsill, M. M. & Bulkeley, H (2009). "Transnational climate governance". Global Environmental Politics. 9 (2): 52–73. doi:10.1162/glep.2009.9.2.52. S2CID 57565967.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  78. Bäckstrand, K.; Lövbrand, E.; Pettenger, M. E. (2007). Climate governance beyond 2012: Competing discourses of green governmentality, ecological modernization and civic environmentalism in 'The Social Construction of Climate Change. Power, Knowledge, Norms, Discourses'. Aldershot: Ashgate Publishing. pp. 123–149.
  79. Farah, Paolo Davide, Global Energy Governance, International Environmental Law and Regional Dimension (November 30, 2015). Paolo Davide FARAH & Piercarlo ROSSI, ENERGY: POLICY, LEGAL AND SOCIAL-ECONOMIC ISSUES UNDER THE DIMENSIONS OF SUSTAINABILITY AND SECURITY, World Scientific Reference on Globalisation in Eurasia and the Pacific Rim, Imperial College Press (London, UK) & World Scientific Publishing, Nov. 2015.
  80. "The Paris Agreement". UNFCCC. Retrieved 28 March 2022.
  81. The Paris Agreement. UNFCCC. 2015. Retrieved 2022-08-03.
  82. Yergin, Daniel (2020). The New Map. New York: Penguin Press. pp. Chapter 41. ISBN 9780698191051.

External links