Coordinates: Sky map 00h 49m 09.89841s, +05° 23′ 18.9931″

van Maanen 2

From The Right Wiki
(Redirected from Van Maanen's Star)
Jump to navigationJump to search
Van Maanen 2
File:Van Maanen's Star SDSS.jpg
Van Maanen's star (bright star in the middle)
Credit: SDSS
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Pisces
Pronunciation /vænˈmʌnənz/)[1]
Right ascension 00h 49m 09.89841s[2]
Declination +05° 23′ 18.9931″[2]
Apparent magnitude (V) 12.374[3]
Characteristics
Spectral type DZ8[4]
U−B color index 0.064[3]
B−V color index 0.546[3]
V−R color index 0.268[3]
R−I color index 0.4[5]
Astrometry
Radial velocity (Rv)−12±7[6] km/s
Proper motion (μ) RA: +1,231.325[2] mas/yr
Dec.: −2711.830[2] mas/yr
Parallax (π)231.7800 ± 0.0183 mas[7]
Distance14.072 ± 0.001 ly
(4.3144 ± 0.0003 pc)
Absolute magnitude (MV)14.21±0.03[8]
Details[8]
Mass0.67±0.02 M
Radius0.01129 ± 0.00066[lower-alpha 1] R
Luminosity1.622+0.156
−0.143
×10−4
 L
Surface gravity (log g)8.16±0.03 cgs
Temperature6,130±110 K
Age3.45±0.36[lower-alpha 2] Gyr
Other designations
van Maanen's Star, van Maanen 2, vMa2, BD+18°2165, GJ 35, HIP 3829, G 001-027, LFT 76, LHS 7, LTT 10292, WD 0046+051, Wolf 28[5]
Database references
SIMBADdata

Van Maanen 2, or van Maanen's Star, is the closest known solitary white dwarf to the Solar System. It is a dense, compact stellar remnant no longer generating energy and has equivalent to about 68% of the Sun's mass but only 1% of its radius.[9] At a distance of 14.1 light-years it is the third closest of its type of star after Sirius B and Procyon B, in that order.[10][11] Discovered in 1917 by Dutch–American astronomer Adriaan van Maanen,[12] Van Maanen 2 was the third white dwarf identified, after 40 Eridani B and Sirius B, and the first solitary example.[13]

Observation history

While searching for a companion to the large-proper-motion star Lalande 1299, in 1917 Dutch–American astronomer Adriaan van Maanen discovered this star with an even larger proper motion a few arcminutes to the northeast. He estimated the annual proper motion of the latter as 3 arcseconds. This star had been captured on a plate taken November 11, 1896 for the Carte du Ciel Catalog of Toulouse and it showed an apparent magnitude of 12.3.[14] Prominent absorption features of calcium and iron in the spectrum led van Maanen to assign it a spectral classification of F0,[12] and it was initially known as "van Maanen's F star".[14] In 1918, American astronomer Frederick Seares obtained a refined visual magnitude of 12.34, but the distance to the star remained unknown.[15] Two years later, van Maanen published a parallax estimate of 0.246″, giving it an absolute magnitude of +14.8. This made it the faintest F-type star known at that time.[16] In 1923, Dutch-American astronomer Willem Luyten published a study of stars with large proper motions in which he identified what he called "van Maanen's star" as one of only three known white dwarfs, a term he coined.[17] These are stars that have an unusually low absolute magnitude for their spectral class, lying well below the main sequence on the Hertzsprung–Russell diagram of stellar temperature vs. luminosity.[18] The high mass density of white dwarfs was demonstrated in 1925 by American astronomer Walter Adams when he measured the gravitational redshift of Sirius B as 21 km/s.[19] In 1926, British astrophysicist Ralph Fowler used the new theory of quantum mechanics to show that these stars are supported by electron gas in a degenerate state.[20][21] British astrophysicist Leon Mestel demonstrated in 1952 that the energy they emit is the surviving heat from bygone nuclear fusion. He showed that the latter no longer occurs within a white dwarf, and calculated the internal temperature of van Maanen 2 as 6 × 106 K. He gave a preliminary age estimate of 1011/A years, where A is the mean atomic weight of the nuclei in the star.[22] In 2016, it was discovered that a spectrographic plate of the star made in 1917 gives evidence – the earliest known – of planetary matter outside the Solar System,[23][24][25] in the form of calcium absorption lines that indicate the presence of planetary material polluting the stellar atmosphere.

Characteristics

Van Maanen 2 is 14.1 light-years (4.3 parsecs) from the Sun in the constellation Pisces, about 2° to the south of the star Delta Piscium,[26] with a relatively high proper motion of 2.978″ annually along a position angle of 155.538°.[27] It is closer to the Sun than any other solitary white dwarf. It is too faint to be seen with the naked eye.[26] Like other white dwarfs, it is a very dense star: its mass has been estimated to be about 67% of the Sun's,[28] yet it has only 1% of the Sun's radius (1.23 times the Earth's radius) [8][lower-alpha 1] The outer atmosphere has a temperature of approximately 6,110 K,[28] which is relatively cool for a white dwarf. As all white dwarfs steadily radiate away their heat over time, this temperature can be used to estimate its age, thought to be around 3 billion years.[29] The progenitor of this white dwarf had an estimated 2.6 solar masses and remained on the main sequence for about 900 million years. This gives the star an overall age of about 4.1 billion years. When this star left the main sequence, it expanded into a red giant that reached a maximum radius of 1,000 times the current radius of the Sun, or about 4.6 astronomical units. Any planets orbiting within this radius would have been engulfed in the star's extent.[30] The stellar classification of Van Maanen 2 is DZ8, having a helium atmosphere with a significant presence of heavier elements in its spectrum – what astronomers term metals.[31] Indeed, this star is the prototype (archetype in practice) for DZ white dwarfs. Physical models of white dwarfs used by today's astrophysicists show that elements with mass greater than helium would sink, all things being equal, below the photosphere, leaving hydrogen and helium to be visible in the spectrum; for heavier elements to appear here requires a recent external source.[32] It is unlikely that they were obtained from the interstellar medium, since that is primarily composed of hydrogen and helium.[31] Instead, the surface of the star was likely strewn with circumstellar material, such as from the remains of one or more rocky, terrestrial planets.[32] The total mass of metals in the atmosphere of Van Maanen 2 is estimated to be around 1021 g—about the same mass as a large moon such as Ariel.[33] These pollutants will sink deeper into the atmosphere on time scales of around three million years, which indicates the material is being replenished at a rate of 107 g/s. These materials could have been accreted in the form of multiple planetesimals smaller than around 84 km colliding with the star.[34] White dwarfs with a spectrum that indicates high levels of metal contamination of the photosphere often have a circumstellar disk. In the case of van Maanen 2, observations at a wavelength of 24 μm do not show the infrared excess that might be generated by a dusty disk. Instead there is a noticeable deficit. The predicted flux at 24 μm is 0.23 mJy, whereas the measured value is 0.11 ± 0.03 mJy. This deficit may be explained by collision-induced absorption in the atmosphere of the star,[35] as seen in certain white dwarfs that have temperatures below 4,000 K, as a result of collisions between hydrogen molecules or between hydrogen molecules and helium.[36] A paper published in 2015 found that, based upon the space velocity of this star, it made the closest approach 15,070 years ago as then it was 3.1 ly (0.95 pc) from the Sun,[37] although it uses an outdated and unreliable radial velocity measurement.[6]

Possible companion

The possibility of a substellar companion remains uncertain. As of 2004, one paper claimed detection of this,[38] while another discounted this.[39] As of 2008, observations with the Spitzer Space Telescope appear to rule out any companions within 1,200 AU of the star that have four Jupiter masses or greater.[40] No potential proper motion companions have been identified between an angular separation of 5 arcseconds out to 10°, ruling out objects with a mass of 75 MJ or greater.[41]

See also

Notes

  1. 1.0 1.1 1.2 Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    (5,7726,130)4103.79=0.01129R.
  2. 2.0 2.1 This is just the cooling age

References

  1. Dickinson, David (December 17, 2012), "Astro-Challenge: Hunting for Van Maanen's Star", Astro Guyz, archived from the original on April 28, 2019, retrieved April 28, 2019.
  2. 2.0 2.1 2.2 2.3 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  3. 3.0 3.1 3.2 3.3 Koen, C.; et al. (April 2010), "UBV(RI)C JHK observations of Hipparcos-selected nearby stars", Monthly Notices of the Royal Astronomical Society, 403 (4): 1949–1968, Bibcode:2010MNRAS.403.1949K, doi:10.1111/j.1365-2966.2009.16182.x.
  4. McCook, G. P.; Sion, E. M. (August 2006), "Spectroscopically Identified White Dwarfs", VizieR On-line Data Catalog, Bibcode:2006yCat.3235....0M, retrieved 2010-12-04. VizieR On-line Data Catalog: III/235B
  5. 5.0 5.1 "Van Maanen's star", SIMBAD Astronomical Object Database, Centre de Données astronomiques de Strasbourg, retrieved 2008-12-08.
  6. 6.0 6.1 Lindegren, Lennart; Dravins, Dainis (August 2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv:2105.09014, Bibcode:2021A&A...652A..45L, doi:10.1051/0004-6361/202141344, S2CID 234778154, A45.
  7. Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv:2012.01533. Bibcode:2021A&A...649A...1G. doi:10.1051/0004-6361/202039657. S2CID 227254300. (Erratum: doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  8. 8.0 8.1 8.2 Subasavage, John P.; et al. (July 2017), "The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 parsec White Dwarf Sample", The Astronomical Journal, 154 (1): 24, arXiv:1706.00709, Bibcode:2017AJ....154...32S, doi:10.3847/1538-3881/aa76e0, S2CID 119189852, 32.
  9. Giammichele, N.; et al. (April 2012), "Know Your Neighborhood: A Detailed Model Atmosphere Analysis of Nearby White Dwarfs", The Astrophysical Journal Supplement, 199 (2): 29, arXiv:1202.5581, Bibcode:2012ApJS..199...29G, doi:10.1088/0067-0049/199/2/29, S2CID 118304737. Based on log L/L = −3.77.
  10. The One Hundred Nearest Star Systems, RECONS, 2008-01-01, retrieved 2008-12-08.
  11. Holberg, J. B.; et al. (May 2002), "A Determination of the Local Density of White Dwarf Stars", The Astrophysical Journal, 571 (1): 512–518, arXiv:astro-ph/0102120, Bibcode:2002ApJ...571..512H, doi:10.1086/339842, S2CID 14231823.
  12. 12.0 12.1 van Maanen, A. (December 1917), "Two Faint Stars with Large Proper Motion", Publications of the Astronomical Society of the Pacific, 29 (172): 258–259, Bibcode:1917PASP...29..258V, doi:10.1086/122654.
  13. Schatzman, Évry (1958), White Dwarfs, North Holland Publishing Company, p. 2.
  14. 14.0 14.1 Holberg, J. B. (May 2009), "The Discovery of the Existence of White Dwarf Stars: 1862 to 1930", Journal for the History of Astronomy, 40 (2): 137–154, Bibcode:2009JHA....40..137H, doi:10.1177/002182860904000201, S2CID 117939625.
  15. Seares, F. H. (1918), "Magnitudes and Colors of Three Faint Stars of Large Proper Motion", Publications of the Astronomical Society of the Pacific, 30 (175): 191–192, Bibcode:1918PASP...30..191S, doi:10.1086/122724.
  16. van Maanen, Adriaan (1920), "No. 182. The photographic determination of stellar parallaxes with the 60-inch reflector. Fourth series.", Contributions from the Mount Wilson Observatory, 182: 1–35, Bibcode:1920CMWCI.182....1V.—van Maanen identified the star as "Anon. 1".
  17. Holberg, J. B. (2005), "How Degenerate Stars Came to be Known as White Dwarfs", Bulletin of the American Astronomical Society, 37: 1503, Bibcode:2005AAS...20720501H.
  18. Luyten, Willem J. (1923), "Bulletin Number 344 - A study of stars with large proper motions", Lick Observatory Bulletin, 11: 1–32, Bibcode:1923LicOB..11....1L, doi:10.5479/ADS/bib/1923LicOB.11.1L.—See p. 20.
  19. Adams, W. S. (1925), "The relativity displacement of the spectral lines in the companion of Sirius", The Observatory, 48 (7): 337–342, Bibcode:1925Obs....48..337A.
  20. Fowler, R. H. (1926), "On Dense Matter", Monthly Notices of the Royal Astronomical Society, 87 (2): 114–122, Bibcode:1926MNRAS..87..114F, doi:10.1093/mnras/87.2.114.
  21. Harman, Peter Michael; Mitton, Simon (2002), Cambridge Scientific Minds, Cambridge University Press, pp. 230–232, ISBN 0-521-78612-6.
  22. Mestel, L. (1952), "On the theory of white dwarf stars. I. The energy sources of white dwarfs", Monthly Notices of the Royal Astronomical Society, 112: 583–597, Bibcode:1952MNRAS.112..583M, doi:10.1093/mnras/112.6.583.
  23. Zuckerman, Benjamin (2015), Dufour, Patrick; Bergeron, Pierre; Fontaine, Gilles (eds.), "Recognition of the First Observational Evidence of an Extrasolar Planetary System", Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference, 493 (19th European Workshop on White Dwarfs), Astronomical Society of the Pacific: 291, arXiv:1410.2575, Bibcode:2015ASPC..493..291Z, ISBN 978-1-58381-870-1.
  24. Farihi, J. (2016-03-12), "Circumstellar debris and pollution at white dwarf stars", New Astronomy Reviews, 71: 9–34, arXiv:1604.03092, Bibcode:2016NewAR..71....9F, doi:10.1016/j.newar.2016.03.001, S2CID 118486264.
  25. "1917 astronomical plate has first-ever evidence of exoplanetary system", ScienceDaily, retrieved 2016-04-15.
  26. 26.0 26.1 Burnham, Robert (1978), Burnham's celestial handbook: an observer's guide to the universe beyond the solar system, Dover books explaining science, vol. 3 (2nd ed.), Courier Dover Publications, pp. 1474–1477, ISBN 0-486-23673-0.
  27. Sion, Edward M.; et al. (June 2014), "The White Dwarfs within 25 pc of the Sun: Kinematics and Spectroscopic Subtypes", The Astronomical Journal, 147 (6): 11, arXiv:1401.4989, Bibcode:2014AJ....147..129S, doi:10.1088/0004-6256/147/6/129, S2CID 119184859, 129.
  28. 28.0 28.1 Limoges, M. -M.; et al. (August 2015), "Physical Properties of the Current Census of Northern White Dwarfs within 40 pc of the Sun", The Astrophysical Journal Supplement Series, 219 (2): 35, arXiv:1505.02297, Bibcode:2015ApJS..219...19L, doi:10.1088/0067-0049/219/2/19, S2CID 118494290, 19.
  29. Sion, Edward M.; et al. (December 2009), "The White Dwarfs Within 20 Parsecs of the Sun: Kinematics and Statistics", The Astronomical Journal, 138 (6): 1681–1689, arXiv:0910.1288, Bibcode:2009AJ....138.1681S, doi:10.1088/0004-6256/138/6/1681, S2CID 119284418.
  30. Burleigh, M. R.; et al. (May 2008), "The 'DODO' survey - I. Limits on ultra-cool substellar and planetary-mass companions to van Maanen's star (vMa2)", Monthly Notices of the Royal Astronomical Society: Letters, 386 (1): L5–L9, arXiv:0801.2917, Bibcode:2008MNRAS.386L...5B, doi:10.1111/j.1745-3933.2008.00446.x, S2CID 51811203.
  31. 31.0 31.1 Farihi, Jay (March 2011), "Evidence for Terrestrial Planetary System Remnants at White Dwarfs", Planetary Systems Beyond the Main Sequence: Proceedings of the International Conference, AIP Conference Proceedings, vol. 1331, pp. 193–210, arXiv:1010.6067, Bibcode:2011AIPC.1331..193F, doi:10.1063/1.3556201.
  32. 32.0 32.1 Farihi, J.; et al. (June 2010), "Rocky planetesimals as the origin of metals in DZ stars", Monthly Notices of the Royal Astronomical Society, 404 (4): 2123–2135, arXiv:1001.5025, Bibcode:2010MNRAS.404.2123F, doi:10.1111/j.1365-2966.2010.16426.x, S2CID 10102898.
  33. Jacobson, R. A.; et al. (June 1992), "The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data", The Astronomical Journal, 103 (6): 2068–2078, Bibcode:1992AJ....103.2068J, doi:10.1086/116211.
  34. Wyatt, M. C.; et al. (April 2014), "Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution", Monthly Notices of the Royal Astronomical Society, 439 (4): 3371–3391, arXiv:1401.6173, Bibcode:2014MNRAS.439.3371W, doi:10.1093/mnras/stu183, S2CID 118449054.
  35. Farihi, J.; et al. (April 2009), "Infrared Signatures of Disrupted Minor Planets at White Dwarfs", The Astrophysical Journal, 694 (2): 805–819, arXiv:0901.0973, Bibcode:2009ApJ...694..805F, doi:10.1088/0004-637X/694/2/805, S2CID 14171378.
  36. Farihi, J. (May 2005), "Cool versus Ultracool White Dwarfs", The Astronomical Journal, 129 (5): 2382–2385, arXiv:astro-ph/0502134, Bibcode:2005AJ....129.2382F, doi:10.1086/429527, S2CID 16849900.
  37. Bailer-Jones, C. A. L. (March 2015), "Close encounters of the stellar kind", Astronomy & Astrophysics, 575: 13, arXiv:1412.3648, Bibcode:2015A&A...575A..35B, doi:10.1051/0004-6361/201425221, S2CID 59039482, A35.
  38. Makarov, Valeri V. (2004), "A Substellar Companion to van Maanen 2", The Astrophysical Journal Letters, 600 (1): L71–L73, Bibcode:2004ApJ...600L..71M, doi:10.1086/381544.
  39. Farihi, J.; et al. (June 2004), "Mid-Infrared Observations of van Maanen 2: No Substellar Companion", Astrophysical Journal Letters, 608 (2): L109–L112, arXiv:astro-ph/0405245, Bibcode:2004ApJ...608L.109F, doi:10.1086/422502, S2CID 17166073.
  40. Farihi, J.; et al. (July 2008), "Spitzer IRAC Observations of White Dwarfs. II. Massive Planetary and Cold Brown Dwarf Companions to Young and Old Degenerates", The Astrophysical Journal, 681 (2): 1470–1483, arXiv:0804.0237, Bibcode:2008ApJ...681.1470F, doi:10.1086/588726, S2CID 15490630.
  41. Kervella, Pierre; et al. (March 2019), "Stellar and substellar companions of nearby stars from Gaia DR2. Binarity from proper motion anomaly", Astronomy & Astrophysics, 623: 23, arXiv:1811.08902, Bibcode:2019A&A...623A..72K, doi:10.1051/0004-6361/201834371, S2CID 119491061, A72.