Abramov's algorithm

From The Right Wiki
Jump to navigationJump to search

In mathematics, particularly in computer algebra, Abramov's algorithm computes all rational solutions of a linear recurrence equation with polynomial coefficients. The algorithm was published by Sergei A. Abramov in 1989.[1][2]

Universal denominator

The main concept in Abramov's algorithm is a universal denominator. Let 𝕂 be a field of characteristic zero. The dispersion dis(p,q) of two polynomials p,q𝕂[n] is defined asdis(p,q)=max{k:deg(gcd(p(n),q(n+k)))1}{1},where denotes the set of non-negative integers. Therefore the dispersion is the maximum k such that the polynomial p and the k-times shifted polynomial q have a common factor. It is 1 if such a k does not exist. The dispersion can be computed as the largest non-negative integer root of the resultant resn(p(n),q(n+k))𝕂[k].[3][4] Let k=0rpk(n)y(n+k)=f(n) be a recurrence equation of order r with polynomial coefficients pk𝕂[n], polynomial right-hand side f𝕂[n] and rational sequence solution y(n)𝕂(n). It is possible to write y(n)=p(n)/q(n) for two relatively prime polynomials p,q𝕂[n]. Let D=dis(pr(nr),p0(n)) andu(n)=gcd([p0(n+D)]D+1_,[pr(nr)]D+1_)where [p(n)]k_=p(n)p(n1)p(nk+1) denotes the falling factorial of a function. Then q(n) divides u(n). So the polynomial u(n) can be used as a denominator for all rational solutions y(n) and hence it is called a universal denominator.[5]

Algorithm

Let again k=0rpk(n)y(n+k)=f(n) be a recurrence equation with polynomial coefficients and u(n) a universal denominator. After substituting y(n)=z(n)/u(n) for an unknown polynomial z(n)𝕂[n] and setting (n)=lcm(u(n),,u(n+r)) the recurrence equation is equivalent tok=0rpk(n)z(n+k)u(n+k)(n)=f(n)(n).As the u(n+k) cancel this is a linear recurrence equation with polynomial coefficients which can be solved for an unknown polynomial solution z(n). There are algorithms to find polynomial solutions. The solutions for z(n) can then be used again to compute the rational solutions y(n)=z(n)/u(n).[2] algorithm rational_solutions is input: Linear recurrence equation k=0rpk(n)y(n+k)=f(n),pk,f𝕂[n],p0,pr0. output: The general rational solution y if there are any solutions, otherwise false. D=disp(pr(nr),p0(n)) u(n)=gcd([p0(n+D)]D+1_,[pr(nr)]D+1_) (n)=lcm(u(n),,u(n+r)) Solve k=0rpk(n)z(n+k)u(n+k)(n)=f(n)(n) for general polynomial solution z(n) if solution z(n) exists then return general solution y(n)=z(n)/u(n) else return false end if

Example

The homogeneous recurrence equation of order 1(n1)y(n)+(n1)y(n+1)=0over has a rational solution. It can be computed by considering the dispersionD=dis(p1(n1),p0(n))=disp(n,n1)=1.This yields the following universal denominator:u(n)=gcd([p0(n+1)]2_,[pr(n1)]2_)=(n1)nand(n)=lcm(u(n),u(n+1))=(n1)n(n+1).Multiplying the original recurrence equation with (n) and substituting y(n)=z(n)/u(n) leads to(n1)(n+1)z(n)+(n1)(n1)z(n+1)=0.This equation has the polynomial solution z(n)=c for an arbitrary constant c. Using y(n)=z(n)/u(n) the general rational solution isy(n)=c(n1)nfor arbitrary c.

References

  1. Abramov, Sergei A. (1989). "Rational solutions of linear differential and difference equations with polynomial coefficients". USSR Computational Mathematics and Mathematical Physics. 29 (6): 7–12. doi:10.1016/s0041-5553(89)80002-3. ISSN 0041-5553.
  2. 2.0 2.1 Abramov, Sergei A. (1995). "Rational solutions of linear difference and q -difference equations with polynomial coefficients". Proceedings of the 1995 international symposium on Symbolic and algebraic computation - ISSAC '95. pp. 285–289. doi:10.1145/220346.220383. ISBN 978-0897916998. S2CID 15424889.
  3. Man, Yiu-Kwong; Wright, Francis J. (1994). "Fast polynomial dispersion computation and its application to indefinite summation". Proceedings of the international symposium on Symbolic and algebraic computation - ISSAC '94. pp. 175–180. doi:10.1145/190347.190413. ISBN 978-0897916387. S2CID 2192728.
  4. Gerhard, Jürgen (2005). Modular Algorithms in Symbolic Summation and Symbolic Integration. Lecture Notes in Computer Science. Vol. 3218. doi:10.1007/b104035. ISBN 978-3-540-24061-7. ISSN 0302-9743.
  5. Chen, William Y. C.; Paule, Peter; Saad, Husam L. (2007). "Converging to Gosper's Algorithm". arXiv:0711.3386 [math.CA].
File:Wikidata-logo.svg WikiProject Mathematics on Wikidata File:Wikidata-logo.svg