Associator

From The Right Wiki
Jump to navigationJump to search

In abstract algebra, the term associator is used in different ways as a measure of the non-associativity of an algebraic structure. Associators are commonly studied as triple systems.

Ring theory

For a non-associative ring or algebra R, the associator is the multilinear map [,,]:R×R×RR given by

[x,y,z]=(xy)zx(yz).

Just as the commutator

[x,y]=xyyx

measures the degree of non-commutativity, the associator measures the degree of non-associativity of R. For an associative ring or algebra the associator is identically zero. The associator in any ring obeys the identity

w[x,y,z]+[w,x,y]z=[wx,y,z][w,xy,z]+[w,x,yz].

The associator is alternating precisely when R is an alternative ring. The associator is symmetric in its two rightmost arguments when R is a pre-Lie algebra. The nucleus is the set of elements that associate with all others: that is, the n in R such that

[n,R,R]=[R,n,R]=[R,R,n]={0}.

The nucleus is an associative subring of R.

Quasigroup theory

A quasigroup Q is a set with a binary operation :Q×QQ such that for each a, b in Q, the equations ax=b and ya=b have unique solutions x, y in Q. In a quasigroup Q, the associator is the map (,,):Q×Q×QQ defined by the equation

(ab)c=(a(bc))(a,b,c)

for all a, b, c in Q. As with its ring theory analog, the quasigroup associator is a measure of nonassociativity of Q.

Higher-dimensional algebra

In higher-dimensional algebra, where there may be non-identity morphisms between algebraic expressions, an associator is an isomorphism

ax,y,z:(xy)zx(yz).

Category theory

In category theory, the associator expresses the associative properties of the internal product functor in monoidal categories.

See also

References

  • Bremner, M.; Hentzel, I. (March 2002). "Identities for the Associator in Alternative Algebras". Journal of Symbolic Computation. 33 (3): 255–273. CiteSeerX 10.1.1.85.1905. doi:10.1006/jsco.2001.0510.
  • Schafer, Richard D. (1995) [1966]. An Introduction to Nonassociative Algebras. Dover. ISBN 0-486-68813-5.