Bell diagonal state

From The Right Wiki
Jump to navigationJump to search

Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.[1]

Definition

The Bell diagonal state is defined as the probabilistic mixture of Bell states:

|ϕ+=12(|0A|0B+|1A|1B)
|ϕ=12(|0A|0B|1A|1B)
|ψ+=12(|0A|1B+|1A|0B)
|ψ=12(|0A|1B|1A|0B)

In density operator form, a Bell diagonal state is defined as ϱBell=p1|ϕ+ϕ+|+p2|ϕϕ|+p3|ψ+ψ+|+p4|ψψ| where p1,p2,p3,p4 is a probability distribution. Since p1+p2+p3+p4=1, a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as pmax=max{p1,p2,p3,p4}.

Properties

1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e., pmax1/2.[2] 2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:[1] Relative entropy of entanglement: Sr=1h(pmax),[3] where h is the binary entropy function. Entanglement of formation: Ef=h(12+pmax(1pmax)),where h is the binary entropy function. Negativity: N=pmax1/2 Log-negativity: EN=log(2pmax) 3. Any 2-qubit state where the reduced density matrices are maximally mixed, ρA=ρB=I/2, is Bell-diagonal in some local basis. Viz., there exist local unitaries U=U1U2 such that UρU is Bell-diagonal.[2]

References

  1. 1.0 1.1 Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009-06-17). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 260606370.
  2. 2.0 2.1 Horodecki, Ryszard; Horodecki, Michal/ (1996-09-01). "Information-theoretic aspects of inseparability of mixed states". Physical Review A. 54 (3): 1838–1843. arXiv:quant-ph/9607007. Bibcode:1996PhRvA..54.1838H. doi:10.1103/PhysRevA.54.1838. PMID 9913669. S2CID 2340228.
  3. Vedral, V.; Plenio, M. B.; Rippin, M. A.; Knight, P. L. (1997-03-24). "Quantifying Entanglement". Physical Review Letters. 78 (12): 2275–2279. arXiv:quant-ph/9702027. Bibcode:1997PhRvL..78.2275V. doi:10.1103/PhysRevLett.78.2275. hdl:10044/1/300. S2CID 16118336.