Beta-dual space

From The Right Wiki
Jump to navigationJump to search

In functional analysis and related areas of mathematics, the beta-dual or β-dual is a certain linear subspace of the algebraic dual of a sequence space.

Definition

Given a sequence space X, the β-dual of X is defined as

Xβ:={x𝕂:i=1xiyi converges yX}.

Here, 𝕂{,} so that 𝕂 denotes either the real or complex scalar field. If X is an FK-space then each y in Xβ defines a continuous linear form on X

fy(x):=i=1xiyixX.

Examples

  • c0β=1
  • (1)β=
  • ωβ={0}

Properties

The beta-dual of an FK-space E is a linear subspace of the continuous dual of E. If E is an FK-AK space then the beta dual is linear isomorphic to the continuous dual.