In seven-dimensional geometry, a runcinated 7-simplex is a convex uniform 7-polytope with 3rd order truncations (runcination) of the regular 7-simplex.
There are 8 unique runcinations of the 7-simplex with permutations of truncations, and cantellations.
Small prismated octaexon (acronym: spo) (Jonathan Bowers)[1]
Coordinates
The vertices of the runcinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 8-orthoplex.
Small biprismated octaexon (sibpo) (Jonathan Bowers)[2]
Coordinates
The vertices of the biruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 8-orthoplex.
The vertices of the runcitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,3). This construction is based on facets of the runcitruncated 8-orthoplex.
The vertices of the biruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,3,3). This construction is based on facets of the biruncitruncated 8-orthoplex.
The vertices of the runcicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,3). This construction is based on facets of the runcicantellated 8-orthoplex.
The vertices of the biruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,3,3). This construction is based on facets of the biruncicantellated 8-orthoplex.
Great prismated octaexon (acronym: gapo) (Jonathan Bowers)[6]
Coordinates
The vertices of the runcicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,4). This construction is based on facets of the runcicantitruncated 8-orthoplex.
Great biprismated octaexon (acronym: gibpo) (Jonathan Bowers)[7]
Coordinates
The vertices of the biruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the biruncicantitruncated 8-orthoplex.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]