Cantellated 5-simplexes
In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex. There are unique 4 degrees of cantellation for the 5-simplex, including truncations.
Cantellated 5-simplex
The cantellated 5-simplex has 60 vertices, 240 edges, 290 faces (200 triangles and 90 squares), 135 cells (30 tetrahedra, 30 octahedra, 15 cuboctahedra and 60 triangular prisms), and 27 4-faces (6 cantellated 5-cell, 6 rectified 5-cells, and 15 tetrahedral prisms).
Alternate names
- Cantellated hexateron
- Small rhombated hexateron (Acronym: sarx) (Jonathan Bowers)[1]
Coordinates
The vertices of the cantellated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,1,2) or of (0,1,1,2,2,2). These represent positive orthant facets of the cantellated hexacross and bicantellated hexeract respectively.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | File:5-simplex t02.svg | File:5-simplex t02 A4.svg |
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | File:5-simplex t02 A3.svg | File:5-simplex t02 A2.svg |
Dihedral symmetry | [4] | [3] |
Bicantellated 5-simplex
Bicantellated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | 2rr{3,3,3,3} = | |
Coxeter-Dynkin diagram | File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png or File:CDel node.pngFile:CDel split1.pngFile:CDel nodes 11.pngFile:CDel 3ab.pngFile:CDel nodes.png | |
4-faces | 32 | 12 t02{3,3,3} 20 {3}x{3} |
Cells | 180 | 30 t1{3,3} 120 {}x{3} 30 t02{3,3} |
Faces | 420 | 240 {3} 180 {4} |
Edges | 360 | |
Vertices | 90 | |
Vertex figure | File:Bicantellated 5-simplex verf.png | |
Coxeter group | A5×2, [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal |
Alternate names
- Bicantellated hexateron
- Small birhombated dodecateron (Acronym: sibrid) (Jonathan Bowers)[2]
Coordinates
The coordinates can be made in 6-space, as 90 permutations of:
- (0,0,1,1,2,2)
This construction exists as one of 64 orthant facets of the bicantellated 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | File:5-simplex t13.svg | File:5-simplex t13 A4.svg |
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | File:5-simplex t13 A3.svg | File:5-simplex t13 A2.svg |
Dihedral symmetry | [4] | [[3]]=[6] |
Cantitruncated 5-simplex
cantitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | tr{3,3,3,3} = | |
Coxeter-Dynkin diagram | File:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.pngFile:CDel 3.pngFile:CDel node.png or File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.pngFile:CDel 3a.pngFile:CDel nodea.pngFile:CDel 3a.pngFile:CDel nodea.png | |
4-faces | 27 | 6 t012{3,3,3}File:4-simplex t012.svg 6 t{3,3,3}File:4-simplex t01.svg 15 {}x{3,3} |
Cells | 135 | 15 t012{3,3} File:3-simplex t012.svg 30 t{3,3}File:3-simplex t01.svg 60 {}x{3} 30 {3,3}File:3-simplex t0.svg |
Faces | 290 | 120 {3}File:2-simplex t0.svg 80 {6}File:2-simplex t01.svg 90 {}x{}File:2-cube.svg |
Edges | 300 | |
Vertices | 120 | |
Vertex figure | File:Canitruncated 5-simplex verf.png Irr. 5-cell | |
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex |
Alternate names
- Cantitruncated hexateron
- Great rhombated hexateron (Acronym: garx) (Jonathan Bowers)[3]
Coordinates
The vertices of the cantitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,3) or of (0,1,2,3,3,3). These construction can be seen as facets of the cantitruncated 6-orthoplex or bicantitruncated 6-cube respectively.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | File:5-simplex t012.svg | File:5-simplex t012 A4.svg |
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | File:5-simplex t012 A3.svg | File:5-simplex t012 A2.svg |
Dihedral symmetry | [4] | [3] |
Bicantitruncated 5-simplex
Bicantitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | 2tr{3,3,3,3} = | |
Coxeter-Dynkin diagram | File:CDel node.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node 1.pngFile:CDel 3.pngFile:CDel node.png or File:CDel node 1.pngFile:CDel split1.pngFile:CDel nodes 11.pngFile:CDel 3ab.pngFile:CDel nodes.png | |
4-faces | 32 | 12 tr{3,3,3} 20 {3}x{3} |
Cells | 180 | 30 t{3,3} 120 {}x{3} 30 t{3,4} |
Faces | 420 | 240 {3} 180 {4} |
Edges | 450 | |
Vertices | 180 | |
Vertex figure | File:Bicanitruncated 5-simplex verf.png | |
Coxeter group | A5×2, [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal |
Alternate names
- Bicantitruncated hexateron
- Great birhombated dodecateron (Acronym: gibrid) (Jonathan Bowers)[4]
Coordinates
The coordinates can be made in 6-space, as 180 permutations of:
- (0,0,1,2,3,3)
This construction exists as one of 64 orthant facets of the bicantitruncated 6-orthoplex.
Images
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | File:5-simplex t123.svg | File:5-simplex t123 A4.svg |
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | File:5-simplex t123 A3.svg | File:5-simplex t123 A2.svg |
Dihedral symmetry | [4] | [[3]]=[6] |
Related uniform 5-polytopes
The cantellated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "5D uniform polytopes (polytera)". x3o3x3o3o - sarx, o3x3o3x3o - sibrid, x3x3x3o3o - garx, o3x3x3x3o - gibrid
External links
- Glossary for hyperspace, George Olshevsky.
- Polytopes of Various Dimensions, Jonathan Bowers
- Multi-dimensional Glossary