Carbon dioxide in Earth's atmosphere
In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of three main greenhouse gases in the atmosphere of Earth. The concentration of carbon dioxide (CO2) in the atmosphere reached 427 ppm (0.04%) in 2024.[1] This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century.[2][3][4] The increase is due to human activity.[5] The current increase in CO2 concentrations primarily driven by the burning of fossil fuels.[6] Other significant human activities that emit CO2 include cement production, deforestation, and biomass burning. The increase in atmospheric concentrations of CO2 and other long-lived greenhouse gases such as methane increase the absorption and emission of infrared radiation by the atmosphere. This has led to a rise in average global temperature and ocean acidification. Another direct effect is the CO2 fertilization effect. The increase in atmospheric concentrations of CO2 causes a range of further effects of climate change on the environment and human living conditions. Carbon dioxide is a greenhouse gas. It absorbs and emits infrared radiation at its two infrared-active vibrational frequencies. The two wavelengths are 4.26 μm (2,347 cm−1) (asymmetric stretching vibrational mode) and 14.99 μm (667 cm−1) (bending vibrational mode). CO2 plays a significant role in influencing Earth's surface temperature through the greenhouse effect.[7] Light emission from the Earth's surface is most intense in the infrared region between 200 and 2500 cm−1,[8] as opposed to light emission from the much hotter Sun which is most intense in the visible region. Absorption of infrared light at the vibrational frequencies of atmospheric CO2 traps energy near the surface, warming the surface of Earth and its lower atmosphere. Less energy reaches the upper atmosphere, which is therefore cooler because of this absorption.[9] The present atmospheric concentration of CO2 is the highest for 14 million years.[10] Concentrations of CO2 in the atmosphere were as high as 4,000 ppm during the Cambrian period about 500 million years ago, and as low as 180 ppm during the Quaternary glaciation of the last two million years.[2] Reconstructed temperature records for the last 420 million years indicate that atmospheric CO2 concentrations peaked at approximately 2,000 ppm. This peak happened during the Devonian period (400 million years ago). Another peak occurred in the Triassic period (220–200 million years ago).[11]
Current concentration and future trends
Current situation
Since the start of the Industrial Revolution, atmospheric CO2 concentration have been increasing, causing global warming and ocean acidification.[12] In October 2023 the average level of CO2 in Earth's atmosphere, adjusted for seasonal variation, was 422.17 parts per million by volume (ppm).[13] Figures are published monthly by the National Oceanic & Atmospheric Administration (NOAA).[14][15] The value had been about 280 ppm during the 10,000 years up to the mid-18th century.[2][3][4] Each part per million of CO2 in the atmosphere represents approximately 2.13 gigatonnes of carbon, or 7.82 gigatonnes of CO2.[16] It was pointed out in 2021 that "the current rates of increase of the concentration of the major greenhouse gases (carbon dioxide, methane and nitrous oxide) are unprecedented over at least the last 800,000 years".[17]: 515 It has been estimated that 2,400 gigatons of CO₂ have been emitted by human activity since 1850, with some absorbed by oceans and land, and about 950 gigatons remaining in the atmosphere. Around 2020 the emission rate was over 40 gigatons per year.[18] Some fraction (a projected 20–35%) of the fossil carbon transferred thus far will persist in the atmosphere as elevated CO2 levels for many thousands of years after these carbon transfer activities begin to subside.[19][20]
Annual and regional fluctuations
Atmospheric CO2 concentrations fluctuate slightly with the seasons, falling during the Northern Hemisphere spring and summer as plants consume the gas and rising during northern autumn and winter as plants go dormant or die and decay. The level drops by about 6 or 7 ppm (about 50 Gt) from May to September during the Northern Hemisphere's growing season, and then goes up by about 8 or 9 ppm. The Northern Hemisphere dominates the annual cycle of CO2 concentration because it has much greater land area and plant biomass in mid-latitudes (30-60 degrees) than the Southern Hemisphere. Concentrations reach a peak in May as the Northern Hemisphere spring greenup begins, and decline to a minimum in October, near the end of the growing season.[21][22] Concentrations also vary on a regional basis, most strongly near the ground with much smaller variations aloft. In urban areas concentrations are generally higher[23] and indoors they can reach 10 times background levels.
Measurements and predictions made in the recent past
- Data from 2009 found that the global mean CO2 concentration was rising at a rate of approximately 2 ppm/year and accelerating.[24][25]
- The daily average concentration of atmospheric CO2 at Mauna Loa Observatory first exceeded 400 ppm on 10 May 2013[26][27] although this concentration had already been reached in the Arctic in June 2012.[28] Data from 2013 showed that the concentration of carbon dioxide in the atmosphere is this high "for the first time in 55 years of measurement—and probably more than 3 million years of Earth history."[29]
- As of 2018, CO2 concentrations were measured to be 410 ppm.[24][30]
Measurement techniques
The concentrations of carbon dioxide in the atmosphere are expressed as parts per million by volume (abbreviated as ppmv, or ppm(v), or just ppm). To convert from the usual ppmv units to ppm mass (abbreviated as ppmm, or ppm(m)), multiply by the ratio of the molar mass of CO2 to that of air, i.e. times 1.52 (44.01 divided by 28.96). The first reproducibly accurate measurements of atmospheric CO2 were from flask sample measurements made by Dave Keeling at Caltech in the 1950s.[31] Measurements at Mauna Loa have been ongoing since 1958. Additionally, measurements are also made at many other sites around the world. Many measurement sites are part of larger global networks. Global network data are often made publicly available.
Data networks
There are several surface measurement (including flasks and continuous in situ) networks including NOAA/ERSL,[32] WDCGG,[33] and RAMCES.[34] The NOAA/ESRL Baseline Observatory Network, and the Scripps Institution of Oceanography Network[35] data are hosted at the CDIAC at ORNL. The World Data Centre for Greenhouse Gases (WDCGG), part of GAW, data are hosted by the JMA. The Reseau Atmospherique de Mesure des Composes an Effet de Serre database (RAMCES) is part of IPSL. From these measurements, further products are made which integrate data from the various sources. These products also address issues such as data discontinuity and sparseness. GLOBALVIEW-CO2 is one of these products.[36]
Analytical methods to investigate sources of CO2
- The burning of long-buried fossil fuels releases CO2 containing carbon of different isotopic ratios to those of living plants, enabling distinction between natural and human-caused contributions to CO2 concentration.[37]
- There are higher atmospheric CO2 concentrations in the Northern Hemisphere, where most of the world's population lives (and emissions originate from), compared to the southern hemisphere. This difference has increased as anthropogenic emissions have increased.[38]
- Atmospheric O2 levels are decreasing in Earth's atmosphere as it reacts with the carbon in fossil fuels to form CO2.[39]
Causes of the current increase
Anthropogenic CO2 emissions
While CO2 absorption and release is always happening as a result of natural processes, the recent rise in CO2 levels in the atmosphere is known to be mainly due to human (anthropogenic) activity.[17] Anthropogenic carbon emissions exceed the amount that can be taken up or balanced out by natural sinks.[41] Thus carbon dioxide has gradually accumulated in the atmosphere and, as of May 2022, its concentration is 50% above pre-industrial levels.[3]
The extraction and burning of fossil fuels, releasing carbon that has been underground for many millions of years, has increased the atmospheric concentration of CO2.[4][12] As of year 2019 the extraction and burning of geologic fossil carbon by humans releases over 30 gigatonnes of CO2 (9 billion tonnes carbon) each year.[42] This larger disruption to the natural balance is responsible for recent growth in the atmospheric CO2 concentration.[30][43] Currently about half of the carbon dioxide released from the burning of fossil fuels is not absorbed by vegetation and the oceans and remains in the atmosphere.[44] Burning fossil fuels such as coal, petroleum, and natural gas is the leading cause of increased anthropogenic CO2; deforestation is the second major cause. In 2010, 9.14 gigatonnes of carbon (GtC, equivalent to 33.5 gigatonnes of CO2 or about 4.3 ppm in Earth's atmosphere) were released from fossil fuels and cement production worldwide, compared to 6.15 GtC in 1990.[45] In addition, land use change contributed 0.87 GtC in 2010, compared to 1.45 GtC in 1990.[45] In the period 1751 to 1900, about 12 GtC were released as CO2 to the atmosphere from burning of fossil fuels, whereas from 1901 to 2013 the figure was about 380 GtC.[46] The International Energy Agency estimates that the top 1% of emitters globally each had carbon footprints of over 50 tonnes of CO2 in 2021, more than 1,000 times greater than those of the bottom 1% of emitters. The global average energy-related carbon footprint is around 4.7 tonnes of CO2 per person.[47]
Roles in natural processes on Earth
Greenhouse effect
On Earth, carbon dioxide is the most relevant, direct greenhouse gas that is influenced by human activities. Water is responsible for most (about 36–70%) of the total greenhouse effect, and the role of water vapor as a greenhouse gas depends on temperature. Carbon dioxide is often mentioned in the context of its increased influence as a greenhouse gas since the pre-industrial (1750) era. In 2013, the increase in CO2 was estimated to be responsible for 1.82 W m−2 of the 2.63 W m−2 change in radiative forcing on Earth (about 70%).[48] Earth's natural greenhouse effect makes life as we know it possible, and carbon dioxide in the atmosphere plays a significant role in providing for the relatively high temperature on Earth. The greenhouse effect is a process by which thermal radiation from a planetary atmosphere warms the planet's surface beyond the temperature it would have in the absence of its atmosphere.[49][50][51] The concept of more atmospheric CO2 increasing ground temperature was first published by Svante Arrhenius in 1896.[52] The increased radiative forcing due to increased CO2 in the Earth's atmosphere is based on the physical properties of CO2 and the non-saturated absorption windows where CO2 absorbs outgoing long-wave energy. The increased forcing drives further changes in Earth's energy balance and, over the longer term, in Earth's climate.[17]
Carbon cycle
Atmospheric carbon dioxide plays an integral role in the Earth's carbon cycle whereby CO2 is removed from the atmosphere by some natural processes such as photosynthesis and deposition of carbonates, to form limestones for example, and added back to the atmosphere by other natural processes such as respiration and the acid dissolution of carbonate deposits. There are two broad carbon cycles on Earth: the fast carbon cycle and the slow carbon cycle. The fast carbon cycle refers to movements of carbon between the environment and living things in the biosphere whereas the slow carbon cycle involves the movement of carbon between the atmosphere, oceans, soil, rocks, and volcanism. Both cycles are intrinsically interconnected and atmospheric CO2 facilitates the linkage. Natural sources of atmospheric CO2 include volcanic outgassing, the combustion of organic matter, wildfires and the respiration processes of living aerobic organisms. Man-made sources of CO2 include the burning of fossil fuels, as well as some industrial processes such as cement making.
Natural sources of CO2 are more or less balanced by natural carbon sinks, in the form of chemical and biological processes which remove CO2 from the atmosphere. For example, the decay of organic material in forests, grasslands, and other land vegetation - including forest fires - results in the release of about 436 gigatonnes of CO2 (containing 119 gigatonnes carbon) every year, while CO2 uptake by new growth on land counteracts these releases, absorbing 451 Gt (123 Gt C).[54] Although much CO2 in the early atmosphere of the young Earth was produced by volcanic activity, modern volcanic activity releases only 130 to 230 megatonnes of CO2 each year.[55] From the human pre-industrial era to 1940, the terrestrial biosphere represented a net source of atmospheric CO2 (driven largely by land-use changes), but subsequently switched to a net sink with growing fossil carbon emissions.[56]
Oceanic carbon cycle
The Earth's oceans contain a large amount of CO2 in the form of bicarbonate and carbonate ions—much more than the amount in the atmosphere. The bicarbonate is produced in reactions between rock, water, and carbon dioxide. From 1850 until 2022, the ocean has absorbed 26% of total anthropogenic emissions.[12] However, the rate at which the ocean will take it up in the future is less certain. Even if equilibrium is reached, including dissolution of carbonate minerals, the increased concentration of bicarbonate and decreased or unchanged concentration of carbonate ion will give rise to a higher concentration of un-ionized carbonic acid and dissolved CO2. This higher concentration in the seas, along with higher temperatures, would mean a higher equilibrium concentration of CO2 in the air.[57][58]
Effects of current increase
Direct effects
Direct effects of increasing CO2 concentrations in the atmosphere include increasing global temperatures, ocean acidification and a CO2 fertilization effect on plants and crops.[59]
Temperature rise on land
Changes in global temperatures over the past century provide evidence for the effects of increasing greenhouse gases. When the climate system reacts to such changes, climate change follows. Measurement of the GST is one of the many lines of evidence supporting the scientific consensus on climate change, which is that humans are causing warming of Earth's climate system. The global average and combined land and ocean surface temperature, show a warming of 1.09 °C (range: 0.95 to 1.20 °C) from 1850–1900 to 2011–2020, based on multiple independently produced datasets.[60]: 5 The trend is faster since the 1970s than in any other 50-year period over at least the last 2000 years.[60]: 8 Most of the observed warming occurred in two periods: around 1900 to around 1940 and around 1970 onwards;[61] the cooling/plateau from 1940 to 1970 has been mostly attributed to sulfate aerosol.[62][63]: 207 Some of the temperature variations over this time period may also be due to ocean circulation patterns.[64] Land air temperatures are rising faster than sea surface temperatures. Land temperatures have warmed by 1.59 °C (range: 1.34 to 1.83 °C) from 1850–1900 to 2011–2020, while sea surface temperatures have warmed by 0.88 °C (range: 0.68 to 1.01 °C) over the same period.[60]: 5 For 1980 to 2020, the linear warming trend for combined land and sea temperatures has been 0.18 °C to 0.20 °C per decade, depending on the data set used.[65]: Table 2.4
It is unlikely that any uncorrected effects from urbanisation, or changes in land use or land cover, have raised global land temperature changes by more than 10%.[66]: 189 However, larger urbanisation signals have been found locally in some rapidly urbanising regions, such as eastern China.[65]: Section 2.3.1.1.3 Template loop detected: Template:ExcerptTemperature rise in oceans
It is clear that the ocean is warming as a result of climate change, and this rate of warming is increasing.[67]: 9 The global ocean was the warmest it had ever been recorded by humans in 2022.[68] This is determined by the ocean heat content, which exceeded the previous 2021 maximum in 2022.[68] The steady rise in ocean temperatures is an unavoidable result of the Earth's energy imbalance, which is primarily caused by rising levels of greenhouse gases.[68] Between pre-industrial times and the 2011–2020 decade, the ocean's surface has heated between 0.68 and 1.01 °C.[69]: 1214 The majority of ocean heat gain occurs in the Southern Ocean. For example, between the 1950s and the 1980s, the temperature of the Antarctic Southern Ocean rose by 0.17 °C (0.31 °F), nearly twice the rate of the global ocean.[70]
The warming rate varies with depth. The upper ocean (above 700 m) is warming the fastest. At an ocean depth of a thousand metres the warming occurs at a rate of nearly 0.4 °C per century (data from 1981 to 2019).[71]: Figure 5.4 In deeper zones of the ocean (globally speaking), at 2000 metres depth, the warming has been around 0.1 °C per century.[71]: Figure 5.4 The warming pattern is different for the Antarctic Ocean (at 55°S), where the highest warming (0.3 °C per century) has been observed at a depth of 4500 m.[71]: Figure 5.4Ocean acidification
Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05.[73] Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 422 ppm (as of 2024[update]).[74] CO2 from the atmosphere is absorbed by the oceans. This chemical reaction produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO−3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.[75] A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location. Colder and higher latitude waters are capable of absorbing more CO2. This can cause acidity to rise, lowering the pH and carbonate saturation levels in these areas. There are several other factors that influence the atmosphere-ocean CO2 exchange, and thus local ocean acidification. These include ocean currents and upwelling zones, proximity to large continental rivers, sea ice coverage, and atmospheric exchange with nitrogen and sulfur from fossil fuel burning and agriculture.[76][77][78] A lower ocean pH has a range of potentially harmful effects for marine organisms. Scientists have observed for example reduced calcification, lowered immune responses, and reduced energy for basic functions such as reproduction.[79] Ocean acidification can impact marine ecosystems that provide food and livelihoods for many people. About one billion people are wholly or partially dependent on the fishing, tourism, and coastal management services provided by coral reefs. Ongoing acidification of the oceans may therefore threaten food chains linked with the oceans.[80][81] The only solution that would address the root cause of ocean acidification is to reduce carbon dioxide emissions. This is one of the main objectives of climate change mitigation measures. The removal of carbon dioxide from the atmosphere would also help to reverse ocean acidification. In addition, there are some specific ocean-based mitigation methods, for example ocean alkalinity enhancement and enhanced weathering. These strategies are under investigation, but generally have a low technology readiness level and many risks.[82][83][84]
Ocean acidification has happened before in Earth's geologic history.[85] The resulting ecological collapse in the oceans had long-lasting effects on the global carbon cycle and climate.CO2 fertilization effect
The CO2 fertilization effect or carbon fertilization effect causes an increased rate of photosynthesis while limiting leaf transpiration in plants. Both processes result from increased levels of atmospheric carbon dioxide (CO2).[86][87] The carbon fertilization effect varies depending on plant species, air and soil temperature, and availability of water and nutrients.[88][89] Net primary productivity (NPP) might positively respond to the carbon fertilization effect.[90] Although, evidence shows that enhanced rates of photosynthesis in plants due to CO2 fertilization do not directly enhance all plant growth, and thus carbon storage.[88] The carbon fertilization effect has been reported to be the cause of 44% of gross primary productivity (GPP) increase since the 2000s.[91] Earth System Models, Land System Models and Dynamic Global Vegetation Models are used to investigate and interpret vegetation trends related to increasing levels of atmospheric CO2.[88][92] However, the ecosystem processes associated with the CO2 fertilization effect remain uncertain and therefore are challenging to model.[93][94] Terrestrial ecosystems have reduced atmospheric CO2 concentrations and have partially mitigated climate change effects.[95] The response by plants to the carbon fertilization effect is unlikely to significantly reduce atmospheric CO2 concentration over the next century due to the increasing anthropogenic influences on atmospheric CO2.[87][88][96][97] Earth's vegetated lands have shown significant greening since the early 1980s[98] largely due to rising levels of atmospheric CO2.[99][100][101][102] Theory predicts the tropics to have the largest uptake due to the carbon fertilization effect, but this has not been observed. The amount of CO2 uptake from CO2 fertilization also depends on how forests respond to climate change, and if they are protected from deforestation.[103]
Changes in atmospheric carbon dioxide may reduce the nutritional quality of some crops, with for instance wheat having less protein and less of some minerals.[104]: 439 [105] Food crops could see a reduction of protein, iron and zinc content in common food crops of 3 to 17%.[106]Other direct effects
CO2 emissions have also led to the stratosphere contracting by 400 meters since 1980, which could affect satellite operations, GPS systems and radio communications.[107]
Indirect effects and impacts
Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed. Climate activists are engaged in a range of activities around the world that seek to ameliorate these issues or prevent them from happening.[108]
The effects of climate change vary in timing and location. Up until now the Arctic has warmed faster than most other regions due to climate change feedbacks.[109] Surface air temperatures over land have also increased at about twice the rate they do over the ocean, causing intense heat waves. These temperatures would stabilize if greenhouse gas emissions were brought under control. Ice sheets and oceans absorb the vast majority of excess heat in the atmosphere, delaying effects there but causing them to accelerate and then continue after surface temperatures stabilize. Sea level rise is a particular long term concern as a result. The effects of ocean warming also include marine heatwaves, ocean stratification, deoxygenation, and changes to ocean currents.[110]: 10 The ocean is also acidifying as it absorbs carbon dioxide from the atmosphere.[111]There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can lead to changes of ocean currents, for example a weakening of the Atlantic meridional overturning circulation (AMOC).[67] The main cause of these changes are the emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation. Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system.[113] The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere. This causes the pH value of the seawater to drop.[114] Scientists estimate that the ocean absorbs about 25% of all human-caused CO2 emissions.[114] The various layers of the oceans have different temperatures. For example, the water is colder towards the bottom of the ocean. This temperature stratification will increase as the ocean surface warms due to rising air temperatures.[71]: 471 Connected to this is a decline in mixing of the ocean layers, so that warm water stabilises near the surface. A reduction of cold, deep water circulation follows. The reduced vertical mixing makes it harder for the ocean to absorb heat. So a larger share of future warming goes into the atmosphere and land. One result is an increase in the amount of energy available for tropical cyclones and other storms. Another result is a decrease in nutrients for fish in the upper ocean layers. These changes also reduce the ocean's capacity to store carbon.[115] At the same time, contrasts in salinity are increasing. Salty areas are becoming saltier and fresher areas less salty.[116] Warmer water cannot contain the same amount of oxygen as cold water. As a result, oxygen from the oceans moves to the atmosphere. Increased thermal stratification may reduce the supply of oxygen from surface waters to deeper waters. This lowers the water's oxygen content even more.[117] The ocean has already lost oxygen throughout its water column. Oxygen minimum zones are increasing in size worldwide.[71]: 471
These changes harm marine ecosystems, and this can lead to biodiversity loss or changes in species distribution.[67] This in turn can affect fishing and coastal tourism. For example, rising water temperatures are harming tropical coral reefs. The direct effect is coral bleaching on these reefs, because they are sensitive to even minor temperature changes. So a small increase in water temperature could have a significant impact in these environments. Another example is loss of sea ice habitats due to warming. This will have severe impacts on polar bears and other animals that rely on it. The effects of climate change on oceans put additional pressures on ocean ecosystems which are already under pressure by other impacts from human activities.[67]Approaches for reducing CO2 concentrations
Carbon dioxide has unique long-term effects on climate change that are nearly "irreversible" for a thousand years after emissions stop (zero further emissions). The greenhouse gases methane and nitrous oxide do not persist over time in the same way as carbon dioxide. Even if human carbon dioxide emissions were to completely cease, atmospheric temperatures are not expected to decrease significantly in the short term. This is because the air temperature is determined by a balance between heating, due to greenhouse gases, and cooling due to heat transfer to the ocean. If emissions were to stop, CO2 levels and the heating effect would slowly decrease, but simultaneously the cooling due to heat transfer would diminish (because sea temperatures would get closer to the air temperature), with the result that the air temperature would decrease only slowly. Sea temperatures would continue to rise, causing thermal expansion and some sea level rise.[57] Lowering global temperatures more rapidly would require carbon sequestration or geoengineering. Various techniques have been proposed for removing excess carbon dioxide from the atmosphere.
Carbon dioxide removal (CDR) is a process in which carbon dioxide (CO2) is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products.[118]: 2221 This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies.[119][120] Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR ("CDR is what puts the net into net zero emissions"[121]). In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.[122]: 114 CDR includes methods that are implemented on land or in aquatic systems. Land-based methods include afforestation, reforestation, agricultural practices that sequester carbon in soils (carbon farming), bioenergy with carbon capture and storage (BECCS), and direct air capture combined with storage.[122][123] There are also CDR methods that use oceans and other water bodies. Those are called ocean fertilization, ocean alkalinity enhancement,[124] wetland restoration and blue carbon approaches.[122] A detailed analysis needs to be performed to assess how much negative emissions a particular process achieves. This analysis includes life cycle analysis and "monitoring, reporting, and verification" (MRV) of the entire process.[125] Carbon capture and storage (CCS) are not regarded as CDR because CCS does not reduce the amount of carbon dioxide already in the atmosphere.
As of 2023, CDR is estimated to remove around 2 gigatons of CO2 per year.[126] This is equivalent to about 4% of the greenhouse gases emitted per year by human activities.[127]: 8 There is potential to remove and sequester up to 10 gigatons of carbon dioxide per year by using those CDR methods which can be safely and economically deployed now.[127] However, quantifying the exact amount of carbon dioxide removed from the atmosphere by CDR is difficult.Concentrations in the geologic past
Estimates in 2023 found that the current carbon dioxide concentration in the atmosphere may be the highest it has been in the last 14 million years.[10] However the IPCC Sixth Assessment Report estimated similar levels 3 to 3.3 million years ago in the mid-Pliocene warm period. This period can be a proxy for likely climate outcomes with current levels of CO2.[128]: Figure 2.34
Carbon dioxide is believed to have played an important effect in regulating Earth's temperature throughout its 4.54 billion year history. Early in the Earth's life, scientists have found evidence of liquid water indicating a warm world even though the Sun's output is believed to have only been 70% of what it is today. Higher carbon dioxide concentrations in the early Earth's atmosphere might help explain this faint young sun paradox. When Earth first formed, Earth's atmosphere may have contained more greenhouse gases and CO2 concentrations may have been higher, with estimated partial pressure as large as 1,000 kPa (10 bar), because there was no bacterial photosynthesis to reduce the gas to carbon compounds and oxygen. Methane, a very active greenhouse gas, may have been more prevalent as well.[129][130]
Carbon dioxide concentrations have shown several cycles of variation from about 180 parts per million during the deep glaciations of the Holocene and Pleistocene to 280 parts per million during the interglacial periods. Carbon dioxide concentrations have varied widely over the Earth's history. It is believed to have been present in Earth's first atmosphere, shortly after Earth's formation. The second atmosphere, consisting largely of nitrogen and CO
2 was produced by outgassing from volcanism, supplemented by gases produced during the late heavy bombardment of Earth by huge asteroids.[131] A major part of carbon dioxide emissions were soon dissolved in water and incorporated in carbonate sediments.
The production of free oxygen by cyanobacterial photosynthesis eventually led to the oxygen catastrophe that ended Earth's second atmosphere and brought about the Earth's third atmosphere (the modern atmosphere) 2.4 billion years ago. Carbon dioxide concentrations dropped from 4,000 parts per million during the Cambrian period about 500 million years ago to as low as 180 parts per million 20,000 years ago .[2]
Drivers of ancient-Earth CO2 concentration
On long timescales, atmospheric CO2 concentration is determined by the balance among geochemical processes including organic carbon burial in sediments, silicate rock weathering, and volcanic degassing. The net effect of slight imbalances in the carbon cycle over tens to hundreds of millions of years has been to reduce atmospheric CO2. On a timescale of billions of years, such downward trend appears bound to continue indefinitely as occasional massive historical releases of buried carbon due to volcanism will become less frequent (as earth mantle cooling and progressive exhaustion of internal radioactive heat proceed further). The rates of these processes are extremely slow; hence they are of no relevance to the atmospheric CO2 concentration over the next hundreds or thousands of years.
Photosynthesis in the geologic past
Over the course of Earth's geologic history CO2 concentrations have played a role in biological evolution. The first photosynthetic organisms probably evolved early in the evolutionary history of life and most likely used reducing agents such as hydrogen or hydrogen sulfide as sources of electrons, rather than water.[132] Cyanobacteria appeared later, and the excess oxygen they produced contributed to the oxygen catastrophe,[133] which rendered the evolution of complex life possible. In recent geologic times, low CO2 concentrations below 600 parts per million might have been the stimulus that favored the evolution of C4 plants which increased greatly in abundance between 7 and 5 million years ago over plants that use the less efficient C3 metabolic pathway.[134] At current atmospheric pressures photosynthesis shuts down when atmospheric CO2 concentrations fall below 150 ppm and 200 ppm although some microbes can extract carbon from the air at much lower concentrations.[135][136]
Measuring ancient-Earth CO2 concentration
The most direct method for measuring atmospheric carbon dioxide concentrations for periods before instrumental sampling is to measure bubbles of air (fluid or gas inclusions) trapped in the Antarctic or Greenland ice sheets. The most widely accepted of such studies come from a variety of Antarctic cores and indicate that atmospheric CO2 concentrations were about 260–280 ppm immediately before industrial emissions began and did not vary much from this level during the preceding 10,000 years.[137][138] The longest ice core record comes from East Antarctica, where ice has been sampled to an age of 800,000 years.[139] During this time, the atmospheric carbon dioxide concentration has varied between 180 and 210 ppm during ice ages, increasing to 280–300 ppm during warmer interglacials.[140][141]
CO2 mole fractions in the atmosphere have gone up by around 35 percent since the 1900s, rising from 280 parts per million by volume to 387 parts per million in 2009. One study using evidence from stomata of fossilized leaves suggests greater variability, with CO2 mole fractions above 300 ppm during the period ten to seven thousand years ago,[142] though others have argued that these findings more likely reflect calibration or contamination problems rather than actual CO2 variability.[143][144] Because of the way air is trapped in ice (pores in the ice close off slowly to form bubbles deep within the firn) and the time period represented in each ice sample analyzed, these figures represent averages of atmospheric concentrations of up to a few centuries rather than annual or decadal levels.
Ice cores provide evidence for greenhouse gas concentration variations over the past 800,000 years. Both CO2 and CH
4 concentrations vary between glacial and interglacial phases, and these variations correlate strongly with temperature. Direct data does not exist for periods earlier than those represented in the ice core record, a record that indicates that CO2 mole fractions stayed within a range of 180 ppm to 280 ppm throughout the last 800,000 years, until the increase of the last 250 years. However, various proxy measurements and models suggest larger variations in past epochs: 500 million years ago CO2 levels were likely 10 times higher than now.[145]
Various proxy measurements have been used to try to determine atmospheric CO2 concentrations millions of years in the past. These include boron and carbon isotope ratios in certain types of marine sediments, and the numbers of stomata observed on fossil plant leaves.[134]
Phytane is a type of diterpenoid alkane. It is a breakdown product of chlorophyll, and is now used to estimate ancient CO2 levels.[146] Phytane gives both a continuous record of CO2 concentrations but it also can overlap a break in the CO2 record of over 500 million years.[146]
600 to 400 million years ago
There is evidence for high CO2 concentrations of over 6,000 ppm between 600 and 400 million years ago, and of over 3,000 ppm between 200 and 150 million years ago.[147][failed verification] Indeed, higher CO2 concentrations are thought to have prevailed throughout most of the Phanerozoic Eon, with concentrations four to six times current concentrations during the Mesozoic era, and ten to fifteen times current concentrations during the early Palaeozoic era until the middle of the Devonian period, about 400 million years ago.[148][149][150] The spread of land plants is thought to have reduced CO2 concentrations during the late Devonian, and plant activities as both sources and sinks of CO2 have since been important in providing stabilizing feedbacks.[151] Earlier still, a 200-million year period of intermittent, widespread glaciation extending close to the equator (Snowball Earth) appears to have been ended suddenly, about 550 Ma, by a colossal volcanic outgassing that raised the CO2 concentration of the atmosphere abruptly to 12%, about 350 times modern levels, causing extreme greenhouse conditions and carbonate deposition as limestone at the rate of about 1 mm per day.[152] This episode marked the close of the Precambrian Eon, and was succeeded by the generally warmer conditions of the Phanerozoic, during which multicellular animal and plant life evolved. No volcanic CO2 emission of comparable scale has occurred since. In the modern era, emissions to the atmosphere from volcanoes are approximately 0.645 billion tons of CO2 per year, whereas humans contribute 29 billion tons of CO2 each year.[153][152][154][155]
60 to 5 million years ago
Atmospheric CO2 concentration continued to fall after about 60 million years ago. About 34 million years ago, the time of the Eocene–Oligocene extinction event and when the Antarctic ice sheet started to take its current form, CO2 was about 760 ppm,[156] and there is geochemical evidence that concentrations were less than 300 ppm by about 20 million years ago. Decreasing CO2 concentration, with a tipping point of 600 ppm, was the primary agent forcing Antarctic glaciation.[157] Low CO2 concentrations may have been the stimulus that favored the evolution of C4 plants, which increased greatly in abundance between 7 and 5 million years ago.[134]
See also
References
- ↑ Change, NASA Global Climate. "Carbon Dioxide Concentration | NASA Global Climate Change". Climate Change: Vital Signs of the Planet. Retrieved 3 November 2024.
- ↑ 2.0 2.1 2.2 2.3 Eggleton, Tony (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763. Archived from the original on 14 March 2023. Retrieved 14 March 2023.
- ↑ 3.0 3.1 3.2 "Carbon dioxide now more than 50% higher than pre-industrial levels". National Oceanic and Atmospheric Administration. 3 June 2022. Archived from the original on 5 June 2022. Retrieved 14 June 2022.
- ↑ 4.0 4.1 4.2 "The NOAA Annual Greenhouse Gas Index (AGGI) – An Introduction". NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Archived from the original on 27 November 2020. Retrieved 18 December 2020.
- ↑ Etheridge, D.M.; L.P. Steele; R.L. Langenfelds; R.J. Francey; J.-M. Barnola; V.I. Morgan (1996). "Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn". Journal of Geophysical Research. 101 (D2): 4115–28. Bibcode:1996JGR...101.4115E. doi:10.1029/95JD03410. ISSN 0148-0227. S2CID 19674607.
- ↑ IPCC (2022) Summary for policy makers Archived 12 March 2023 at the Wayback Machine in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 August 2022 at the Wayback Machine, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
- ↑ Petty, G.W. (2004). "A First Course in Atmospheric Radiation". Eos Transactions. 85 (36): 229–51. Bibcode:2004EOSTr..85..341P. doi:10.1029/2004EO360007.
- ↑ Atkins, P.; de Paula, J. (2006). Atkins' Physical Chemistry (8th ed.). W.H. Freeman. p. 462. ISBN 978-0-7167-8759-4.
- ↑ "Carbon Dioxide Absorbs and Re-emits Infrared Radiation". UCAR Center for Science Education. 2012. Archived from the original on 21 September 2017. Retrieved 9 September 2017.
- ↑ 10.0 10.1 Ahmed, Issam. "Current carbon dioxide levels last seen 14 million years ago". phys.org. Retrieved 8 February 2024.
- ↑ "Climate and CO2 in the Atmosphere". Archived from the original on 6 October 2018. Retrieved 10 October 2007.
- ↑ 12.0 12.1 12.2 Friedlingstein, Pierre; O'Sullivan, Michael; Jones, Matthew W.; Andrew, Robbie M.; Gregor, Luke; Hauck, Judith; Le Quéré, Corinne; Luijkx, Ingrid T.; Olsen, Are; Peters, Glen P.; Peters, Wouter; Pongratz, Julia; Schwingshackl, Clemens; Sitch, Stephen; Canadell, Josep G. (11 November 2022). "Global Carbon Budget 2022". Earth System Science Data. 14 (11): 4811–4900. Bibcode:2022ESSD...14.4811F. doi:10.5194/essd-14-4811-2022. hdl:20.500.11850/594889. File:Creative Commons by small.svg This article incorporates text from this source, which is available under the CC BY 4.0 license.
- ↑ "Parts per million" refers to the number of carbon dioxide molecules per million molecules of dry air. "Carbon Dioxide LATEST MEASUREMENT". Climate Change: Vital Signs of the Planet. NASA Global Climate Change. Archived from the original on 17 April 2022. Updated monthly.
- ↑ "Global Monitoring Laboratory - Trends in Atmospheric Carbon Dioxide". National Oceanic & Atmospheric Administration. Latest figure, and graphs of trend; frequently updated
- ↑ "Table of atmospheric CO₂ since 1958, updated monthly". National Oceanic & Atmospheric Administration.
The actual figures fluctuate month-by-month throughout the year, so figures for the same month of different years should be compared, or a seasonally corrected figure used.
- ↑ "Conversion Tables". Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory. 18 July 2020. Archived from the original on 27 September 2017. Retrieved 18 July 2020. Alt URL Archived 23 February 2016 at the Wayback Machine
- ↑ 17.0 17.1 17.2 Eyring, V., N.P. Gillett, K.M. Achuta Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P.J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, and Y. Sun, 2021: Chapter 3: Human Influence on the Climate System Archived 7 March 2023 at the Wayback Machine. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 9 August 2021 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 423–552, doi:10.1017/9781009157896.005
- ↑ "The World Counts". The World Counts. Retrieved 4 December 2023.
- ↑ Archer D (2009). "Atmospheric lifetime of fossil fuel carbon dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. Archived from the original on 24 February 2021. Retrieved 7 March 2021.
- ↑ Joos F, Roth R, Fuglestvedt JS, Peters GP, Enting IG, Von Bloh W, et al. (2013). "Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis". Atmospheric Chemistry and Physics. 13 (5): 2793–2825. doi:10.5194/acpd-12-19799-2012. hdl:20.500.11850/58316. Archived from the original on 22 July 2020. Retrieved 7 March 2021.
- ↑ Rasmussen, Carl Edward. "Atmospheric Carbon Dioxide Growth Rate". Archived from the original on 14 March 2023. Retrieved 14 March 2023.
- ↑ "Frequently Asked Questions". Carbon Dioxide Information Analysis Center (CDIAC). Archived from the original on 17 August 2011. Retrieved 13 June 2007.
- ↑ George K, Ziska LH, Bunce JA, Quebedeaux B (2007). "Elevated atmospheric CO2 concentration and temperature across an urban–rural transect". Atmospheric Environment. 41 (35): 7654–7665. Bibcode:2007AtmEn..41.7654G. doi:10.1016/j.atmosenv.2007.08.018. Archived from the original on 15 October 2019. Retrieved 12 September 2019.
- ↑ 24.0 24.1 Tans, Pieter. "Trends in Carbon Dioxide". NOAA/ESRL. Archived from the original on 25 January 2013. Retrieved 11 December 2009.
- ↑ "Carbon Budget 2009 Highlights". globalcarbonproject.org. Archived from the original on 16 December 2011. Retrieved 2 November 2012.
- ↑ "Carbon dioxide passes symbolic mark". BBC. 10 May 2013. Archived from the original on 23 May 2019. Retrieved 10 May 2013.
- ↑ "Up-to-date weekly average CO2 at Mauna Loa". NOAA. Archived from the original on 24 May 2019. Retrieved 1 June 2019.
- ↑ "Greenhouse gas levels pass symbolic 400ppm CO2 milestone". The Guardian. Associated Press. 1 June 2012. Archived from the original on 22 January 2014. Retrieved 11 May 2013.
- ↑ Kunzig, Robert (9 May 2013). "Climate Milestone: Earth's CO2 Level Passes 400 ppm". National Geographic. Archived from the original on 15 December 2013. Retrieved 12 May 2013.
- ↑ 30.0 30.1 "Trends in Atmospheric Carbon Dioxide". Earth System Research Laboratories. NOAA. Archived from the original on 25 January 2013. Retrieved 14 March 2023.
- ↑ "The Early Keeling Curve | Scripps CO2 Program". scrippsco2.ucsd.edu. Archived from the original on 8 October 2022. Retrieved 14 March 2023.
- ↑ "NOAA CCGG page Retrieved 2 March 2016". Archived from the original on 11 August 2011. Retrieved 14 March 2023.
- ↑ WDCGG webpage Archived 6 April 2016 at the Wayback Machine Retrieved 2 March 2016
- ↑ RAMCES webpage
- ↑ "CDIAC CO2 page Retrieved 9 February 2016". Archived from the original on 13 August 2011. Retrieved 14 March 2023.
- ↑ "GLOBALVIEW-CO2 information page. Retrieved 9 February 2016". Archived from the original on 31 January 2020. Retrieved 14 March 2023.
- ↑ e.g. Gosh, Prosenjit; Brand, Willi A. (2003). "Stable isotope ratio mass spectrometry in global climate change research" (PDF). International Journal of Mass Spectrometry. 228 (1): 1–33. Bibcode:2003IJMSp.228....1G. CiteSeerX 10.1.1.173.2083. doi:10.1016/S1387-3806(03)00289-6. Archived (PDF) from the original on 11 August 2017. Retrieved 2 July 2012.
Global change issues have become significant due to the sustained rise in atmospheric trace gas concentrations (CO2, N
2O, CH
4) over recent years, attributable to the increased per capita energy consumption of a growing global population. - ↑ Keeling, Charles D.; Piper, Stephen C.; Whorf, Timothy P.; Keeling, Ralph F. (2011). "Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003". Tellus B. 63 (1): 1–22. Bibcode:2011TellB..63....1K. doi:10.1111/j.1600-0889.2010.00507.x. ISSN 0280-6509.
- ↑ Bender, Michael L.; Ho, David T.; Hendricks, Melissa B.; Mika, Robert; Battle, Mark O.; Tans, Pieter P.; Conway, Thomas J.; Sturtevant, Blake; Cassar, Nicolas (2005). "Atmospheric O2/N2changes, 1993–2002: Implications for the partitioning of fossil fuel CO2sequestration". Global Biogeochemical Cycles. 19 (4): n/a. Bibcode:2005GBioC..19.4017B. doi:10.1029/2004GB002410. ISSN 0886-6236.
- ↑ Evans, Simon (5 October 2021). "Analysis: Which countries are historically responsible for climate change? / Historical responsibility for climate change is at the heart of debates over climate justice". CarbonBrief.org. Carbon Brief. Archived from the original on 26 October 2021.
Source: Carbon Brief analysis of figures from the Global Carbon Project, CDIAC, Our World in Data, Carbon Monitor, Houghton and Nassikas (2017) and Hansis et al (2015).
- ↑ Ballantyne, A.P.; Alden, C.B.; Miller, J.B.; Tans, P.P.; White, J.W.C. (2012). "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years". Nature. 488 (7409): 70–72. Bibcode:2012Natur.488...70B. doi:10.1038/nature11299. ISSN 0028-0836. PMID 22859203. S2CID 4335259.
- ↑ 42.0 42.1 Friedlingstein, P., Jones, M., O'Sullivan, M., Andrew, R., Hauck, J., Peters, G., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C. and 66 others (2019) "Global carbon budget 2019". Earth System Science Data, 11(4): 1783–1838. doi:10.5194/essd-11-1783-2019. File:CC-BY icon.svg Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
- ↑ Dlugokencky, E. (5 February 2016). "Annual Mean Carbon Dioxide Data". Earth System Research Laboratories. NOAA. Archived from the original on 14 March 2023. Retrieved 12 February 2016.
- ↑ A.P. Ballantyne; C.B. Alden; J.B. Miller; P.P. Tans; J.W. C. White (2012). "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years". Nature. 488 (7409): 70–72. Bibcode:2012Natur.488...70B. doi:10.1038/nature11299. PMID 22859203. S2CID 4335259.
- ↑ 45.0 45.1 "Global carbon budget 2010 (summary)". Tyndall Centre for Climate Change Research. Archived from the original on 23 July 2012.
- ↑ Calculated from file global.1751_2013.csv in [1] Archived 22 October 2011 at the Wayback Machine from the Carbon Dioxide Information Analysis Center.
- ↑ IEA (2023), The world’s top 1% of emitters produce over 1000 times more CO2 than the bottom 1%, IEA, Paris https://www.iea.org/commentaries/the-world-s-top-1-of-emitters-produce-over-1000-times-more-co2-than-the-bottom-1 , License: CC BY 4.0
- ↑ "IPCC Fifth Assessment Report – Chapter 8: Anthropogenic and Natural Radiative Forcing" (PDF). Archived (PDF) from the original on 22 October 2018. Retrieved 14 March 2023.
- ↑ "Annex II Glossary". Intergovernmental Panel on Climate Change. Archived from the original on 3 November 2018. Retrieved 15 October 2010.
- ↑ A concise description of the greenhouse effect is given in the Intergovernmental Panel on Climate Change Fourth Assessment Report, "What is the Greenhouse Effect?" FAQ 1.3 – AR4 WGI Chapter 1: Historical Overview of Climate Change Science Archived 30 November 2018 at the Wayback Machine, IPCC Fourth Assessment Report, Chapter 1, p. 115: "To balance the absorbed incoming [solar] energy, the Earth must, on average, radiate the same amount of energy back to space. Because the Earth is much colder than the Sun, it radiates at much longer wavelengths, primarily in the infrared part of the spectrum (see Figure 1). Much of this thermal radiation emitted by the land and ocean is absorbed by the atmosphere, including clouds, and reradiated back to Earth. This is called the greenhouse effect."
Stephen H. Schneider, in Geosphere-biosphere Interactions and Climate, Lennart O. Bengtsson and Claus U. Hammer, eds., Cambridge University Press, 2001, ISBN 0-521-78238-4, pp. 90–91.
E. Claussen, V.A. Cochran, and D.P. Davis, Climate Change: Science, Strategies, & Solutions, University of Michigan, 2001. p. 373.
A. Allaby and M. Allaby, A Dictionary of Earth Sciences, Oxford University Press, 1999, ISBN 0-19-280079-5, p. 244. - ↑ Smil, Vaclav (2003). The Earth's Biosphere: Evolution, Dynamics, and Change. MIT Press. p. 107. ISBN 978-0-262-69298-4. Archived from the original on 14 March 2023. Retrieved 14 March 2023.
- ↑ Arrhenius, Svante (1896). "On the influence of carbonic acid in the air upon the temperature of the ground" (PDF). Philosophical Magazine and Journal of Science: 237–76. Archived (PDF) from the original on 18 November 2020. Retrieved 14 March 2023.
- ↑ Riebeek, Holli (16 June 2011). "The Carbon Cycle". Earth Observatory. NASA. Archived from the original on 5 March 2016. Retrieved 5 April 2018.
- ↑ Kayler, Z.; Janowiak, M.; Swanston, C. (2017). "The Global Carbon Cycle". Considering Forest and Grassland Carbon in Land Management (PDF). United States Department of Agriculture, Forest Service. pp. 3–9. Archived (PDF) from the original on 7 July 2022. Retrieved 14 March 2023.
{{cite book}}
:|journal=
ignored (help) - ↑ Gerlach, T.M. (4 June 1991). "Present-day CO2 emissions from volcanoes". Eos, Transactions, American Geophysical Union. 72 (23): 249, 254–55. Bibcode:1991EOSTr..72..249.. doi:10.1029/90EO10192.
- ↑ Junling Huang; Michael B. McElroy (2012). "The Contemporary and Historical Budget of Atmospheric CO2" (PDF). Canadian Journal of Physics. 90 (8): 707–16. Bibcode:2012CaJPh..90..707H. doi:10.1139/p2012-033. Archived (PDF) from the original on 3 August 2017. Retrieved 14 March 2023.
- ↑ 57.0 57.1 Susan Solomon; Gian-Kasper Plattner; Reto Knutti; Pierre Friedlingstein (February 2009). "Irreversible climate change due to carbon dioxide emissions". Proc. Natl. Acad. Sci. USA. 106 (6): 1704–09. Bibcode:2009PNAS..106.1704S. doi:10.1073/pnas.0812721106. PMC 2632717. PMID 19179281.
- ↑ Archer, David; Eby, Michael; Brovkin, Victor; Ridgwell, Andy; Cao, Long; Mikolajewicz, Uwe; Caldeira, Ken; Matsumoto, Katsumi; Munhoven, Guy; Montenegro, Alvaro; Tokos, Kathy (2009). "Atmospheric Lifetime of Fossil Fuel Carbon Dioxide". Annual Review of Earth and Planetary Sciences. 37 (1): 117–34. Bibcode:2009AREPS..37..117A. doi:10.1146/annurev.earth.031208.100206. hdl:2268/12933. ISSN 0084-6597. Archived from the original on 14 March 2023. Retrieved 14 March 2023.
- ↑ Keeling, Charles D. (5 August 1997). "Climate change and carbon dioxide: An introduction". Proceedings of the National Academy of Sciences. 94 (16): 8273–8274. Bibcode:1997PNAS...94.8273K. doi:10.1073/pnas.94.16.8273. ISSN 0027-8424. PMC 33714. PMID 11607732.
- ↑ 60.0 60.1 60.2 IPCC (2021). "Summary for Policymakers" (PDF). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. ISBN 978-92-9169-158-6.
- ↑ "IPCC AR5 Chapter 2 page 193" (PDF). Archived (PDF) from the original on 21 November 2016. Retrieved 28 January 2016.
- ↑ Houghton, ed. (2001). "Climate Change 2001: Working Group I: The Scientific Basis – Chapter 12: Detection of Climate Change and Attribution of Causes". IPCC. Archived from the original on 11 July 2007. Retrieved 13 July 2007.
- ↑ "Ch 6. Changes in the Climate System". Advancing the Science of Climate Change. 2010. doi:10.17226/12782. ISBN 978-0-309-14588-6.
- ↑ Swanson, K.L.; Sugihara, G.; Tsonis, A.A. (22 September 2009). "Long-term natural variability and 20th century climate change". Proc. Natl. Acad. Sci. U.S.A. 106 (38): 16120–3. Bibcode:2009PNAS..10616120S. doi:10.1073/pnas.0908699106. PMC 2752544. PMID 19805268.
- ↑ 65.0 65.1 Gulev, S. K., P. W. Thorne, J. Ahn, F. J. Dentener, C. M. Domingues, S. Gerland, D. Gong, D. S. Kaufman, H. C. Nnamchi, J. Quaas, J. A. Rivera, S. Sathyendranath, S. L. Smith, B. Trewin, K. von Shuckmann, R. S. Vose, 2021, Changing State of the Climate System (Chapter 2) Archived 2 March 2022 at the Wayback Machine. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
- ↑ IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 March 2019 at the Wayback Machine [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
- ↑ 67.0 67.1 67.2 67.3 "Summary for Policymakers". The Ocean and Cryosphere in a Changing Climate (PDF). 2019. pp. 3–36. doi:10.1017/9781009157964.001. ISBN 978-1-00-915796-4. Archived (PDF) from the original on 29 March 2023. Retrieved 26 March 2023.
- ↑ 68.0 68.1 68.2 Cheng, Lijing; Abraham, John; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Mann, Michael E.; Zhu, Jiang; Wang, Fan; Locarnini, Ricardo; Li, Yuanlong; Zhang, Bin; Yu, Fujiang; Wan, Liying; Chen, Xingrong; Feng, Licheng (2023). "Another Year of Record Heat for the Oceans". Advances in Atmospheric Sciences. 40 (6): 963–974. Bibcode:2023AdAtS..40..963C. doi:10.1007/s00376-023-2385-2. ISSN 0256-1530. PMC 9832248. PMID 36643611. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
- ↑ Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change Archived 2022-10-24 at the Wayback Machine. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2021-08-09 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1211–1362
- ↑ Gille, Sarah T. (15 February 2002). "Warming of the Southern Ocean Since the 1950s". Science. 295 (5558): 1275–1277. Bibcode:2002Sci...295.1275G. doi:10.1126/science.1065863. PMID 11847337. S2CID 31434936.
- ↑ 71.0 71.1 71.2 71.3 71.4 Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O'Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Chapter 5: Changing Ocean, Marine Ecosystems, and Dependent Communities Archived 2019-12-20 at the Wayback Machine. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Archived 2021-07-12 at the Wayback Machine [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.
- ↑ Ritchie, Roser, Mispy, Ortiz-Ospina. "SDG 14 – Measuring progress towards the Sustainable Development Goals Archived 22 January 2022 at the Wayback Machine." SDG-Tracker.org, website (2018).
- ↑ Terhaar, Jens; Frölicher, Thomas L.; Joos, Fortunat (2023). "Ocean acidification in emission-driven temperature stabilization scenarios: the role of TCRE and non-CO2 greenhouse gases". Environmental Research Letters. 18 (2): 024033. Bibcode:2023ERL....18b4033T. doi:10.1088/1748-9326/acaf91. ISSN 1748-9326. S2CID 255431338.
Figure 1f
- ↑ Oxygen, Pro (21 September 2024). "Earth's CO2 Home Page". Retrieved 21 September 2024.
- ↑ Ocean acidification due to increasing atmospheric carbon dioxide (PDF). Royal Society. 2005. ISBN 0-85403-617-2.
- ↑ Jiang, Li-Qing; Carter, Brendan R.; Feely, Richard A.; Lauvset, Siv K.; Olsen, Are (2019). "Surface ocean pH and buffer capacity: past, present and future". Scientific Reports. 9 (1): 18624. Bibcode:2019NatSR...918624J. doi:10.1038/s41598-019-55039-4. PMC 6901524. PMID 31819102. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 16 October 2017 at the Wayback Machine
- ↑ Zhang, Y.; Yamamoto-Kawai, M.; Williams, W.J. (16 February 2020). "Two Decades of Ocean Acidification in the Surface Waters of the Beaufort Gyre, Arctic Ocean: Effects of Sea Ice Melt and Retreat From 1997–2016". Geophysical Research Letters. 47 (3). doi:10.1029/2019GL086421. S2CID 214271838.
- ↑ Beaupré-Laperrière, Alexis; Mucci, Alfonso; Thomas, Helmuth (31 July 2020). "The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification". Biogeosciences. 17 (14): 3923–3942. Bibcode:2020BGeo...17.3923B. doi:10.5194/bg-17-3923-2020. S2CID 221369828.
- ↑ Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O. (11 November 2008). "Ocean acidification causes bleaching and productivity loss in coral reef builders". Proceedings of the National Academy of Sciences. 105 (45): 17442–17446. Bibcode:2008PNAS..10517442A. doi:10.1073/pnas.0804478105. PMC 2580748. PMID 18988740.
- ↑ Dean, Cornelia (30 January 2009). "Rising Acidity Is Threatening Food Web of Oceans, Science Panel Says". New York Times.
- ↑ Service, Robert E. (13 July 2012). "Rising Acidity Brings an Ocean of Trouble". Science. 337 (6091): 146–148. Bibcode:2012Sci...337..146S. doi:10.1126/science.337.6091.146. PMID 22798578.
- ↑ IPCC (2022) Chapter 12: Cross sectoral perspectives
- ↑ Archived 13 October 2022 at the Wayback Machine in Climate Change 2022: Mitigation of Climate ChangeContribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change]
- ↑ Archived 2 August 2022 at the Wayback Machine, Cambridge University Press, Cambridge, United Kingdom and New York, NY, US: 12–36
- ↑ No label or title -- debug: Q28261134, Wikidata Q28261134
- ↑ Ueyama M, Ichii K, Kobayashi H, Kumagai TO, Beringer J, Merbold L, et al. (17 July 2020). "Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model". Environmental Research Letters. 15 (8): 084009. Bibcode:2020ERL....15h4009U. doi:10.1088/1748-9326/ab79e5. ISSN 1748-9326.
- ↑ 87.0 87.1 Tharammal T, Bala G, Narayanappa D, Nemani R (April 2019). "Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century". Climate Dynamics. 52 (7–8): 4393–4406. Bibcode:2019ClDy...52.4393T. doi:10.1007/s00382-018-4388-8. ISSN 0930-7575. S2CID 134286531.
- ↑ 88.0 88.1 88.2 88.3 Hararuk O, Campbell EM, Antos JA, Parish R (December 2018). "Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada". Global Change Biology. 25 (4): 1222–1234. Bibcode:2019GCBio..25.1222H. doi:10.1111/gcb.14561. PMID 30588740.
- ↑ Cartwright J (16 August 2013). "How does carbon fertilization affect crop yield?". environmentalresearchweb. Environmental Research Letters. Archived from the original on 27 June 2018. Retrieved 3 October 2016.
- ↑ Smith WK, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WR, Wieder WR, et al. (March 2016). "Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization". Nature Climate Change. 6 (3): 306–310. Bibcode:2016NatCC...6..306K. doi:10.1038/nclimate2879. ISSN 1758-678X.
- ↑ Chen C, Riley WJ, Prentice IC, Keenan TF (March 2022). "CO2 fertilization of terrestrial photosynthesis inferred from site to global scales". Proceedings of the National Academy of Sciences of the United States of America. 119 (10): e2115627119. Bibcode:2022PNAS..11915627C. doi:10.1073/pnas.2115627119. PMC 8915860. PMID 35238668.
- ↑ Bastos A, Ciais P, Chevallier F, Rödenbeck C, Ballantyne AP, Maignan F, Yin Y, Fernández-Martínez M, Friedlingstein P, Peñuelas J, Piao SL (7 October 2019). "Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange". Atmospheric Chemistry and Physics. 19 (19): 12361–12375. Bibcode:2019ACP....1912361B. doi:10.5194/acp-19-12361-2019. ISSN 1680-7324.
- ↑ Li Q, Lu X, Wang Y, Huang X, Cox PM, Luo Y (November 2018). "Leaf Area Index identified as a major source of variability in modelled CO2 fertilization". Biogeosciences. 15 (22): 6909–6925. doi:10.5194/bg-2018-213.
- ↑ Albani M, Medvigy D, Hurtt GC, Moorcroft PR (December 2006). "The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink: Partitioning of the Eastern US Carbon Sink". Global Change Biology. 12 (12): 2370–2390. doi:10.1111/j.1365-2486.2006.01254.x. S2CID 2861520.
- ↑ Wang S, Zhang Y, Ju W, Chen JM, Ciais P, Cescatti A, et al. (December 2020). "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science. 370 (6522): 1295–1300. Bibcode:2020Sci...370.1295W. doi:10.1126/science.abb7772. hdl:10067/1754050151162165141. PMID 33303610. S2CID 228084631.
- ↑ Sugden AM (11 December 2020). Funk M (ed.). "A decline in the carbon fertilization effect". Science. 370 (6522): 1286.5–1287. Bibcode:2020Sci...370S1286S. doi:10.1126/science.370.6522.1286-e. S2CID 230526366.
- ↑ Kirschbaum MU (January 2011). "Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies". Plant Physiology. 155 (1): 117–24. doi:10.1104/pp.110.166819. PMC 3075783. PMID 21088226.
- ↑ "Global Green Up Slows Warming". earthobservatory.nasa.gov. 18 February 2020. Retrieved 27 December 2020.
- ↑ Tabor A (8 February 2019). "Human Activity in China and India Dominates the Greening of Earth". NASA. Retrieved 27 December 2020.
- ↑ Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, et al. (1 August 2016). "Greening of the Earth and its drivers". Nature Climate Change. 6 (8): 791–795. Bibcode:2016NatCC...6..791Z. doi:10.1038/nclimate3004. S2CID 7980894.
- ↑ Hille K (25 April 2016). "Carbon Dioxide Fertilization Greening Earth, Study Finds". NASA. Retrieved 27 December 2020.
- ↑ "If you're looking for good news about climate change, this is about the best there is right now". Washington Post. Retrieved 11 November 2016.
- ↑ Schimel D, Stephens BB, Fisher JB (January 2015). "Effect of increasing CO2 on the terrestrial carbon cycle". Proceedings of the National Academy of Sciences of the United States of America. 112 (2): 436–41. Bibcode:2015PNAS..112..436S. doi:10.1073/pnas.1407302112. PMC 4299228. PMID 25548156.
- ↑ Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, et al. (2019). "Chapter 5: Food Security" (PDF). In Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, et al. (eds.). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
- ↑ Milius S (13 December 2017). "Worries grow that climate change will quietly steal nutrients from major food crops". Science News. Retrieved 21 January 2018.
- ↑ Smith MR, Myers SS (27 August 2018). "Impact of anthropogenic CO2 emissions on global human nutrition". Nature Climate Change. 8 (9): 834–839. Bibcode:2018NatCC...8..834S. doi:10.1038/s41558-018-0253-3. ISSN 1758-678X. S2CID 91727337.
- ↑ Pisoft, Petr (25 May 2021). "Stratospheric contraction caused by increasing greenhouse gases". Environmental Research Letters. 16 (6): 064038. Bibcode:2021ERL....16f4038P. doi:10.1088/1748-9326/abfe2b.
- ↑ CounterAct; Women's Climate Justice Collective (4 May 2020). "Climate Justice and Feminism Resource Collection". The Commons Social Change Library. Retrieved 8 July 2024.
- ↑ Lindsey, Rebecca; Dahlman, Luann (28 June 2022). "Climate Change: Global Temperature". climate.gov. National Oceanic and Atmospheric Administration. Archived from the original on 17 September 2022.
- ↑ Intergovernmental Panel on Climate Change (IPCC), ed. (2022), "Summary for Policymakers", The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, pp. 3–36, doi:10.1017/9781009157964.001, ISBN 978-1-009-15796-4, retrieved 24 April 2023
- ↑ Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (17 October 2020). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019. ISSN 1543-5938. S2CID 225741986.
- ↑ Käse, Laura; Geuer, Jana K. (2018). "Phytoplankton Responses to Marine Climate Change – an Introduction". YOUMARES 8 – Oceans Across Boundaries: Learning from each other. pp. 55–71. doi:10.1007/978-3-319-93284-2_5. ISBN 978-3-319-93283-5. S2CID 134263396.
- ↑ Cheng, Lijing; Abraham, John; Hausfather, Zeke; Trenberth, Kevin E. (11 January 2019). "How fast are the oceans warming?". Science. 363 (6423): 128–129. Bibcode:2019Sci...363..128C. doi:10.1126/science.aav7619. PMID 30630919. S2CID 57825894.
- ↑ 114.0 114.1 Doney, Scott C.; Busch, D. Shallin; Cooley, Sarah R.; Kroeker, Kristy J. (17 October 2020). "The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities". Annual Review of Environment and Resources. 45 (1): 83–112. doi:10.1146/annurev-environ-012320-083019. File:CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine
- ↑ Freedman, Andrew (29 September 2020). "Mixing of the planet's ocean waters is slowing down, speeding up global warming, study finds". The Washington Post. Archived from the original on 15 October 2020. Retrieved 12 October 2020.
- ↑ Cheng, Lijing; Trenberth, Kevin E.; Gruber, Nicolas; Abraham, John P.; Fasullo, John T.; Li, Guancheng; Mann, Michael E.; Zhao, Xuanming; Zhu, Jiang (2020). "Improved Estimates of Changes in Upper Ocean Salinity and the Hydrological Cycle". Journal of Climate. 33 (23): 10357–10381. Bibcode:2020JCli...3310357C. doi:10.1175/jcli-d-20-0366.1 (inactive 2 December 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link) - ↑ Chester, R.; Jickells, Tim (2012). "Chapter 9: Nutrients oxygen organic carbon and the carbon cycle in seawater". Marine geochemistry (3rd ed.). Chichester, West Sussex, UK: Wiley/Blackwell. pp. 182–183. ISBN 978-1-118-34909-0. OCLC 781078031. Archived from the original on 18 February 2022. Retrieved 20 October 2022.
- ↑ IPCC, 2021: "Annex VII: Glossary". Matthews, J.B.R., V. Möller, R. van Diemen, J.S. Fuglestvedt, V. Masson-Delmotte, C. Méndez, S. Semenov, A. Reisinger (eds.). In "Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change". Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2215–2256, doi:10.1017/9781009157896.022
- ↑ Schenuit, Felix; Colvin, Rebecca; Fridahl, Mathias; McMullin, Barry; Reisinger, Andy; Sanchez, Daniel L.; Smith, Stephen M.; Torvanger, Asbjørn; Wreford, Anita; Geden, Oliver (4 March 2021). "Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases". Frontiers in Climate. 3: 638805. doi:10.3389/fclim.2021.638805. hdl:1885/270309. ISSN 2624-9553.
- ↑ Geden, Oliver (May 2016). "An actionable climate target". Nature Geoscience. 9 (5): 340–342. Bibcode:2016NatGe...9..340G. doi:10.1038/ngeo2699. ISSN 1752-0908. Archived from the original on 25 May 2021. Retrieved 7 March 2021.
- ↑ Ho, David T. (4 April 2023). "Carbon dioxide removal is not a current climate solution — we need to change the narrative". Nature. 616 (7955): 9. Bibcode:2023Natur.616....9H. doi:10.1038/d41586-023-00953-x. ISSN 0028-0836. PMID 37016122. S2CID 257915220.
- ↑ 122.0 122.1 122.2 M. Pathak, R. Slade, P.R. Shukla, J. Skea, R. Pichs-Madruga, D. Ürge-Vorsatz,2022: Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.002.
- ↑ Rackley, Steve; Andrews, Graham; Clery, Diarmaid; De Richter, Renaud; Dowson, George; Knops, Pol; Li, We; Mccord, Stephen; Ming, Tingzhen; Sewel, Adrienne; Styring, Peter; Tyka, Michael (2023). Negative Emissions Technologies for Climate Change Mitigation. Elsevier. ISBN 978-0-12-819663-2.
- ↑ Lebling, Katie; Northrop, Eliza; McCormick, Colin; Bridgwater, Liz (15 November 2022), "Toward Responsible and Informed Ocean-Based Carbon Dioxide Removal: Research and Governance Priorities" (PDF), World Resources Institute: 11, doi:10.46830/wrirpt.21.00090, S2CID 253561039
- ↑ Schenuit, Felix; Gidden, Matthew J.; Boettcher, Miranda; Brutschin, Elina; Fyson, Claire; Gasser, Thomas; Geden, Oliver; Lamb, William F.; Mace, M. J.; Minx, Jan; Riahi, Keywan (3 October 2023). "Secure robust carbon dioxide removal policy through credible certification". Communications Earth & Environment. 4 (1): 349. Bibcode:2023ComEE...4..349S. doi:10.1038/s43247-023-01014-x. ISSN 2662-4435.
- ↑ Smith, Steve; et al. (19 January 2023). "Guest post: The state of 'carbon dioxide removal' in seven charts". Carbon Brief. Retrieved 10 April 2023.
- ↑ 127.0 127.1 National Academies of Sciences, Engineering (24 October 2018). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. National Academies Press. ISBN 978-0-309-48452-7. Archived from the original on 22 November 2021. Retrieved 22 February 2020.
- ↑ Gulev, S.K., P.W. Thorne, J. Ahn, F.J. Dentener, C.M. Domingues, S. Gerland, D. Gong, D.S. Kaufman, H.C. Nnamchi, J. Quaas, J.A. Rivera, S. Sathyendranath, S.L. Smith, B. Trewin, K. von Schuckmann, and R.S. Vose, 2021: Chapter 2: Changing State of the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 287–422, doi:10.1017/9781009157896.004.
- ↑ Walker, James C.G. (June 1985). "Carbon dioxide on the early earth" (PDF). Origins of Life and Evolution of the Biosphere. 16 (2): 117–27. Bibcode:1985OrLi...16..117W. doi:10.1007/BF01809466. hdl:2027.42/43349. PMID 11542014. S2CID 206804461. Archived (PDF) from the original on 14 September 2012. Retrieved 30 January 2010.
- ↑ Pavlov, Alexander A.; Kasting, James F.; Brown, Lisa L.; Rages, Kathy A.; Freedman, Richard (May 2000). "Greenhouse warming by CH4 in the atmosphere of early Earth". Journal of Geophysical Research. 105 (E5): 11981–90. Bibcode:2000JGR...10511981P. doi:10.1029/1999JE001134. PMID 11543544.
- ↑ Zahnle, K.; Schaefer, L.; Fegley, B. (2010). "Earth's Earliest Atmospheres". Cold Spring Harbor Perspectives in Biology. 2 (10): a004895. doi:10.1101/cshperspect.a004895. PMC 2944365. PMID 20573713.
- ↑ Olson JM (May 2006). "Photosynthesis in the Archean era". Photosynth. Res. 88 (2): 109–17. Bibcode:2006PhoRe..88..109O. doi:10.1007/s11120-006-9040-5. PMID 16453059. S2CID 20364747.
- ↑ Buick R (August 2008). "When did oxygenic photosynthesis evolve?". Philos. Trans. R. Soc. Lond. B Biol. Sci. 363 (1504): 2731–43. Bibcode:2008RSPTB.363.2731B. doi:10.1098/rstb.2008.0041. PMC 2606769. PMID 18468984.
- ↑ 134.0 134.1 134.2 Osborne, C.P.; Beerling, D.J. (2006). "Nature's green revolution: the remarkable evolutionary rise of C4 plants". Philosophical Transactions of the Royal Society B: Biological Sciences. 361 (1465): 173–94. doi:10.1098/rstb.2005.1737. PMC 1626541. PMID 16553316.
- ↑ Lovelock, J. E. (1972). "Gaia as seen through the atmosphere". Atmospheric Environment. 6 (8): 579–580. Bibcode:1972AtmEn...6..579L. doi:10.1016/0004-6981(72)90076-5. Archived from the original on 3 November 2011. Retrieved 22 March 2014.
- ↑ Li, K.-F. (30 May 2009). "Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere". Proceedings of the National Academy of Sciences. 106 (24): 9576–9579. Bibcode:2009PNAS..106.9576L. doi:10.1073/pnas.0809436106. PMC 2701016. PMID 19487662. Archived from the original on 12 February 2013. Retrieved 22 March 2014.
- ↑ Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, JM; Morgan, VI (June 1998). "Historical CO2 record derived from a spline fit (20-year cutoff) of the Law Dome DE08 and DE08-2 ice cores". Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory. Archived from the original on 5 March 2012. Retrieved 12 June 2007.
- ↑ Flückiger, Jacqueline (2002). "High-resolution Holocene N
2O ice core record and its relationship with CH
4 and CO2". Global Biogeochemical Cycles. 16 (1): 1010. Bibcode:2002GBioC..16.1010F. doi:10.1029/2001GB001417. - ↑ Amos, J. (4 September 2006). "Deep ice tells long climate story". BBC News. Archived from the original on 23 January 2013. Retrieved 28 April 2010.
- ↑ Hileman B. (November 2005). "Ice Core Record Extended: Analyses of trapped air show current CO2 at highest level in 650,000 years". Chemical & Engineering News. 83 (48): 7. doi:10.1021/cen-v083n048.p007. ISSN 0009-2347. Archived from the original on 15 May 2019. Retrieved 28 January 2010.
- ↑ Vostok Ice Core Data Archived 27 February 2015 at the Wayback Machine, ncdc.noaa.gov Archived 22 April 2021 at the Wayback Machine
- ↑ Friederike Wagner; Bent Aaby; Henk Visscher (2002). "Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event". Proc. Natl. Acad. Sci. USA. 99 (19): 12011–14. Bibcode:2002PNAS...9912011W. doi:10.1073/pnas.182420699. PMC 129389. PMID 12202744.
- ↑ Andreas Indermühle; Bernhard Stauffer; Thomas F. Stocker (1999). "Early Holocene Atmospheric CO2 Concentrations". Science. 286 (5446): 1815. doi:10.1126/science.286.5446.1815a. IndermÜhle, A (1999). "Early Holocene atmospheric CO2concentrations". Science. 286 (5446): 1815a–15. doi:10.1126/science.286.5446.1815a.
- ↑ H. J. Smith; M. Wahlen; D. Mastroianni (1997). "The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition". Geophysical Research Letters. 24 (1): 1–4. Bibcode:1997GeoRL..24....1S. doi:10.1029/96GL03700. S2CID 129667062.
- ↑ File:Phanerozoic Carbon Dioxide.png
- ↑ 146.0 146.1 Witkowski, Caitlyn (28 November 2018). "Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic". Science Advances. 2 (11): eaat4556. Bibcode:2018SciA....4.4556W. doi:10.1126/sciadv.aat4556. PMC 6261654. PMID 30498776.
- ↑ "IPCC: Climate Change 2001: The Scientific Basis" (PDF). Archived (PDF) from the original on 29 August 2022. Retrieved 14 March 2023.
- ↑ Berner, Robert A. (January 1994). "GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time". American Journal of Science. 294 (1): 56–91. Bibcode:1994AmJS..294...56B. doi:10.2475/ajs.294.1.56.
- ↑ Royer, D.L.; R.A. Berner; D.J. Beerling (2001). "Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches". Earth-Science Reviews. 54 (4): 349–92. Bibcode:2001ESRv...54..349R. doi:10.1016/S0012-8252(00)00042-8.
- ↑ Berner, Robert A.; Kothavala, Zavareth (2001). "GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time" (PDF). American Journal of Science. 301 (2): 182–204. Bibcode:2001AmJS..301..182B. CiteSeerX 10.1.1.393.582. doi:10.2475/ajs.301.2.182. Archived (PDF) from the original on 25 April 2006.
- ↑ Beerling, D.J.; Berner, R.A. (2005). "Feedbacks and the co-evolution of plants and atmospheric CO2". Proc. Natl. Acad. Sci. USA. 102 (5): 1302–05. Bibcode:2005PNAS..102.1302B. doi:10.1073/pnas.0408724102. PMC 547859. PMID 15668402.
- ↑ 152.0 152.1 Hoffmann, PF; AJ Kaufman; GP Halverson; DP Schrag (1998). "A neoproterozoic snowball earth". Science. 281 (5381): 1342–46. Bibcode:1998Sci...281.1342H. doi:10.1126/science.281.5381.1342. PMID 9721097. S2CID 13046760.
- ↑ Siegel, Ethan. "How Much CO2 Does A Single Volcano Emit?". Forbes. Archived from the original on 6 June 2017. Retrieved 6 September 2018.
- ↑ Gerlach, TM (1991). "Present-day CO2 emissions from volcanoes". Transactions of the American Geophysical Union. 72 (23): 249–55. Bibcode:1991EOSTr..72..249.. doi:10.1029/90EO10192.
- ↑ See also: "U.S. Geological Survey". 14 June 2011. Archived from the original on 25 September 2012. Retrieved 15 October 2012.
- ↑ "New CO2 data helps unlock the secrets of Antarctic formation". Physorg.com. 13 September 2009. Archived from the original on 15 July 2011. Retrieved 28 January 2010.
- ↑ Pagani, Mark; Huber, Matthew; Liu, Zhonghui; Bohaty, Steven M.; Henderiks, Jorijntje; Sijp, Willem; Krishnan, Srinath; Deconto, Robert M. (2 December 2011). "Drop in carbon dioxide levels led to polar ice sheet, study finds". Science. 334 (6060): 1261–4. Bibcode:2011Sci...334.1261P. doi:10.1126/science.1203909. PMID 22144622. S2CID 206533232. Archived from the original on 22 May 2013. Retrieved 14 May 2013.
External links
- Current global map of carbon dioxide concentrations.
- Global Carbon Dioxide Circulation (NASA; 13 December 2016)
- Video (03:10) – A Year in the Life of Earth's CO2 (NASA; 17 November 2014)