Catalan surface

From The Right Wiki
Jump to navigationJump to search
File:Catalan surface.gif
A Catalan surface.

In geometry, a Catalan surface, named after the Belgian mathematician Eugène Charles Catalan, is a ruled surface all of whose generators are parallel to a fixed plane.

Equations

The vector equation of a Catalan surface is given by

r = s(u) + v L(u),

where r = s(u) is the space curve and L(u) is the unit vector of the ruling at u = u. All the vectors L(u) are parallel to the same plane, called the directrix plane of the surface. This can be characterized by the condition: the mixed product [L(u), L' (u), L" (u)] = 0.[1] The parametric equations of the Catalan surface are [2] x=f(u)+vi(u),y=g(u)+vj(u),z=h(u)+vk(u)

Special cases

If all the generators of a Catalan surface intersect a fixed line, then the surface is called a conoid. Catalan proved that the helicoid and the plane were the only ruled minimal surfaces.

See also

References

  • A. Gray, E. Abbena, S. Salamon, Modern differential geometry of curves and surfaces with Mathematica, 3rd ed. Boca Raton, Florida:CRC Press, 2006. [3] (ISBN 978-1-58488-448-4)
  • "Catalan surface", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • V. Y. Rovenskii, Geometry of curves and surfaces with MAPLE [4] (ISBN 978-0-8176-4074-3)