Centered triangular number

From The Right Wiki
Jump to navigationJump to search

A centered (or centred) triangular number is a centered figurate number that represents an equilateral triangle with a dot in the center and all its other dots surrounding the center in successive equilateral triangular layers. This is also the number of points of a hexagonal lattice with nearest-neighbor coupling whose distance from a given point is less than or equal to n. The following image shows the building of the centered triangular numbers by using the associated figures: at each step, the previous triangle (shown in red) is surrounded by a triangular layer of new dots (in blue). construction

File:Centered triangular numbers hex grid.svg
The first eight centered triangular numbers on a hex grid

Properties

  • The gnomon of the n-th centered triangular number, corresponding to the (n + 1)-th triangular layer, is:
C3,n+1C3,n=3(n+1).
  • The n-th centered triangular number, corresponding to n layers plus the center, is given by the formula:
C3,n=1+3n(n+1)2=3n2+3n+22.
  • Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if positive) is the previous regular triangular number.
  • Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers.
  • For n > 2, the sum of the first n centered triangular numbers is the magic constant for an n by n normal magic square.

Relationship with centered square numbers

The centered triangular numbers can be expressed in terms of the centered square numbers:

C3,n=3C4,n+14,

where

C4,n=n2+(n+1)2.

Lists of centered triangular numbers

The first centered triangular numbers (C3,n < 3000) are:

1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, 1786, 1891, 1999, 2110, 2224, 2341, 2461, 2584, 2710, 2839, 2971, … (sequence A005448 in the OEIS).

The first simultaneously triangular and centered triangular numbers (C3,n = TN < 109) are:

1, 10, 136, 1 891, 26 335, 366 796, 5 108 806, 71 156 485, 991 081 981, … (sequence A128862 in the OEIS).

The generating function

If the centered triangular numbers are treated as the coefficients of the McLaurin series of a function, that function converges for all |x|<1, in which case it can be expressed as the meromorphic generating function

1+4x+10x2+19x3+31x4+...=1x3(1x)4=x2+x+1(1x)3.

References

  • Lancelot Hogben: Mathematics for the Million (1936), republished by W. W. Norton & Company (September 1993), ISBN 978-0-393-31071-9
  • Weisstein, Eric W. "Centered Triangular Number". MathWorld.