Conductor-discriminant formula

From The Right Wiki
Jump to navigationJump to search

In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse (1926, 1930) for abelian extensions and by Artin (1931) for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension L/K of local or global fields from the Artin conductors of the irreducible characters Irr(G) of the Galois group G=G(L/K).

Statement

Let L/K be a finite Galois extension of global fields with Galois group G. Then the discriminant equals

𝔡L/K=χIrr(G)𝔣(χ)χ(1),

where 𝔣(χ) equals the global Artin conductor of χ.[1]

Example

Let L=Q(ζpn)/Q be a cyclotomic extension of the rationals. The Galois group G equals (Z/pn)×. Because (p) is the only finite prime ramified, the global Artin conductor 𝔣(χ) equals the local one 𝔣(p)(χ). Because G is abelian, every non-trivial irreducible character χ is of degree 1=χ(1). Then, the local Artin conductor of χ equals the conductor of the 𝔭-adic completion of Lχ=Lker(χ)/Q, i.e. (p)np, where np is the smallest natural number such that UQp(np)NL𝔭χ/Qp(UL𝔭χ). If p>2, the Galois group G(L𝔭/Qp)=G(L/Qp)=(Z/pn)× is cyclic of order φ(pn), and by local class field theory and using that UQp/UQp(k)=(Z/pk)× one sees easily that if χ factors through a primitive character of (Z/pi)×, then 𝔣(p)(χ)=pi whence as there are φ(pi)φ(pi1) primitive characters of (Z/pi)× we obtain from the formula 𝔡L/Q=(pφ(pn)(n1/(p1))), the exponent is

i=0n(φ(pi)φ(pi1))i=nφ(pn)1(p1)i=0n2pi=nφ(pn)pn1.

Notes

  1. Neukirch 1999, VII.11.9.

References

  • Artin, Emil (1931), "Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper.", Journal für die Reine und Angewandte Mathematik (in German), 1931 (164): 1–11, doi:10.1515/crll.1931.164.1, ISSN 0075-4102, S2CID 117731518, Zbl 0001.00801{{citation}}: CS1 maint: unrecognized language (link)
  • Hasse, H. (1926), "Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. I: Klassenkörpertheorie.", Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 35: 1–55{{citation}}: CS1 maint: unrecognized language (link)
  • Hasse, H. (1930), "Führer, Diskriminante und Verzweigungskörper relativ-Abelscher Zahlkörper.", Journal für die reine und angewandte Mathematik (in German), 1930 (162): 169–184, doi:10.1515/crll.1930.162.169, ISSN 0075-4102, S2CID 199546442{{citation}}: CS1 maint: unrecognized language (link)
  • Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.