Continuous dual q-Hahn polynomials

From The Right Wiki
Jump to navigationJump to search

In mathematics, the continuous dual q-Hahn polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by [1]

pn(x;a,b,cq)=(ab,ac;q)nan3ϕ2(qn,aeiθ,aeiθ;ab,acq;q)

In which x=cos(θ)

Gallery

File:Continuous dual qHahn function abs complex3D Maple PLOT.gif
File:Continuous dual qHahn function re complex3D Maple PLOT.gif
File:Continuous dual qHahn function Im complex3D Maple PLOT.gif
File:Continuous dual qHahn function RE density Maple PLOT.gif
File:Continuous dual qHahn function Im density Maple PLOT.gif
File:Continuous dual qHahn function ABS density Maple PLOT.gif

References

  1. Mesuma Atakishiyeva, Natig Atakishieyev, A NON STANDARD GENERATING FUNCTION FOR CONTINUOUS DUAL Q-HAHN POLYNOMIALS, REVISTA DE MATEMATICA 2011 18(1):111-120
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.