Continuous q-Hermite polynomials

From The Right Wiki
Jump to navigationJump to search

In mathematics, the continuous q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by

Hn(x|q)=einθ2ϕ0[qn,0;q,qne2iθ],x=cosθ.

Recurrence and difference relations

2xHn(xq)=Hn+1(xq)+(1qn)Hn1(xq)

with the initial conditions

H0(xq)=1,H1(xq)=0

From the above, one can easily calculate:

H0(xq)=1H1(xq)=2xH2(xq)=4x2(1q)H3(xq)=8x32x(2qq2)H4(xq)=16x44x2(3qq2q3)+(1qq3+q4)

Generating function

n=0Hn(xq)tn(q;q)n=1(teiθ,teiθ;q)

where x=cosθ.

References

  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
  • Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. CiteSeerX 10.1.1.643.3896.