Conway base 13 function

From The Right Wiki
Jump to navigationJump to search

The Conway base 13 function is a function created by British mathematician John H. Conway as a counterexample to the converse of the intermediate value theorem. In other words, it is a function that satisfies a particular intermediate-value property — on any interval (a,b), the function f takes every value between f(a) and f(b) — but is not continuous. In 2018, a much simpler function with the property that every open set is mapped onto the full real line was published by Aksel Bergfeldt on the mathematics StackExchange.[1] This function is also nowhere continuous.

Purpose

The Conway base 13 function was created as part of a "produce" activity: in this case, the challenge was to produce a simple-to-understand function which takes on every real value in every interval, that is, it is an everywhere surjective function.[2] It is thus discontinuous at every point.

Sketch of definition

  • Every real number x can be represented in base 13 in a unique canonical way; such representations use the digits 0–9 plus three additional symbols, say {A, B, C}. For example, the number 54349589 has a base-13 representation B34C128.
  • If instead of {A, B, C}, we judiciously choose the symbols {+, −, .}, some numbers in base 13 will have representations that look like well-formed decimals in base 10: for example, the number 54349589 has a base-13 representation of −34.128. Of course, most numbers will not be intelligible in this way; for example, the number 3629265 has the base-13 representation 9+0−−7.
  • Conway's base-13 function takes in a real number x and considers its base-13 representation as a sequence of symbols {0, 1, ..., 9, +, −, .}. If from some position onward, the representation looks like a well-formed decimal number r, then f(x) = r. Otherwise, f(x) = 0. (Well-formed means that it starts with a + or − symbol, contains exactly one decimal-point symbol, and otherwise contains only the digits 0–9). For example, if a number x has the representation 8++2.19+0−−7+3.141592653..., then f(x) = +3.141592653....

Definition

The Conway base-13 function is a function f: defined as follows. Write the argument x value as a tridecimal (a "decimal" in base 13) using 13 symbols as "digits": 0, 1, ..., 9, A, B, C; there should be no trailing C recurring. There may be a leading sign, and somewhere there will be a tridecimal point to separate the integer part from the fractional part; these should both be ignored in the sequel. These "digits" can be thought of as having the values 0 to 12 respectively; Conway originally used the digits "+", "−" and "." instead of A, B, C, and underlined all of the base-13 "digits" to clearly distinguish them from the usual base-10 digits and symbols.

  • If from some point onwards, the tridecimal expansion of x is of the form Ax1x2xnCy1y2 where all the digits xi and yj are in {0,,9}, then f(x)=x1xn.y1y2 in usual base-10 notation.
  • Similarly, if the tridecimal expansion of x ends with Bx1x2xnCy1y2, then f(x)=x1xn.y1y2.
  • Otherwise, f(x)=0.

For example:

  • f(12345A3C14.15913)=f(A3C14.15913)=3.14159,
  • f(B1C23413)=1.234,
  • f(1C234A56713)=0.

Properties

  • According to the intermediate-value theorem, every continuous real function f has the intermediate-value property: on every interval (ab), the function f passes through every point between f(a) and f(b). The Conway base-13 function shows that the converse is false: it satisfies the intermediate-value property, but is not continuous.
  • In fact, the Conway base-13 function satisfies a much stronger intermediate-value property—on every interval (ab), the function f passes through every real number. As a result, it satisfies a much stronger discontinuity property— it is discontinuous everywhere.
  • From the above follows even more regarding the discontinuity of the function - its graph is dense in 2.
  • To prove that the Conway base-13 function satisfies this stronger intermediate property, let (ab) be an interval, let c be a point in that interval, and let r be any real number. Create a base-13 encoding of r as follows: starting with the base-10 representation of r, replace the decimal point with C and indicate the sign of r by prepending either an A (if r is positive) or a B (if r is negative) to the beginning. By definition of the Conway base-13 function, the resulting string r^ has the property that f(r^)=r. Moreover, any base-13 string that ends in r^ will have this property. Thus, if we replace the tail end of c with r^, the resulting number will have f(c') = r. By introducing this modification sufficiently far along the tridecimal representation of c, you can ensure that the new number c will still lie in the interval (a,b). This proves that for any number r, in every interval we can find a point c such that f(c)=r.
  • The Conway base-13 function is therefore discontinuous everywhere: a real function that is continuous at x must be locally bounded at x, i.e. it must be bounded on some interval around x. But as shown above, the Conway base-13 function is unbounded on every interval around every point; therefore it is not continuous anywhere.
  • The Conway base-13 function maps almost all the reals in any interval to 0.[3]

See also

  • Darboux function – All derivatives have the intermediate value property

References

  1. "Open maps which are not continuous". Stack Exchange Mathematics. 2018-09-27. In an answer to the question. Retrieved 2023-07-10.
  2. Bernardi, Claudio (February 2016). "Graphs of real functions with pathological behaviors". Soft Computing. 11: 5–6. arXiv:1602.07555. Bibcode:2016arXiv160207555B.
  3. Stein, Noah. "Is Conway's base-13 function measurable?". mathoverflow. Retrieved 6 August 2023.