Del in cylindrical and spherical coordinates

From The Right Wiki
Jump to navigationJump to search

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

  • This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ):
    • The polar angle is denoted by θ[0,π]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
    • The azimuthal angle is denoted by φ[0,2π]: it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
  • The function atan2(y, x) can be used instead of the mathematical function arctan(y/x) owing to its domain and image. The classical arctan function has an image of (−π/2, +π/2), whereas atan2 is defined to have an image of (−π, π].

Coordinate conversions

Conversion between Cartesian, cylindrical, and spherical coordinates[1]
From
Cartesian Cylindrical Spherical
To Cartesian x=xy=yz=z x=ρcosφy=ρsinφz=z x=rsinθcosφy=rsinθsinφz=rcosθ
Cylindrical ρ=x2+y2φ=arctan(yx)z=z ρ=ρφ=φz=z ρ=rsinθφ=φz=rcosθ
Spherical r=x2+y2+z2θ=arctan(x2+y2z)φ=arctan(yx) r=ρ2+z2θ=arctan(ρz)φ=φ r=rθ=θφ=φ

Note that the operation arctan(AB) must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates[1]
Cartesian Cylindrical Spherical
Cartesian x^=x^y^=y^z^=z^ x^=cosφρ^sinφφ^y^=sinφρ^+cosφφ^z^=z^ x^=sinθcosφr^+cosθcosφθ^sinφφ^y^=sinθsinφr^+cosθsinφθ^+cosφφ^z^=cosθr^sinθθ^
Cylindrical ρ^=xx^+yy^x2+y2φ^=yx^+xy^x2+y2z^=z^ ρ^=ρ^φ^=φ^z^=z^ ρ^=sinθr^+cosθθ^φ^=φ^z^=cosθr^sinθθ^
Spherical r^=xx^+yy^+zz^x2+y2+z2θ^=(xx^+yy^)z(x2+y2)z^x2+y2+z2x2+y2φ^=yx^+xy^x2+y2 r^=ρρ^+zz^ρ2+z2θ^=zρ^ρz^ρ2+z2φ^=φ^ r^=r^θ^=θ^φ^=φ^
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
Cartesian Cylindrical Spherical
Cartesian x^=x^y^=y^z^=z^ x^=xρ^yφ^x2+y2y^=yρ^+xφ^x2+y2z^=z^ x^=x(x2+y2r^+zθ^)yx2+y2+z2φ^x2+y2x2+y2+z2y^=y(x2+y2r^+zθ^)+xx2+y2+z2φ^x2+y2x2+y2+z2z^=zr^x2+y2θ^x2+y2+z2
Cylindrical ρ^=cosφx^+sinφy^φ^=sinφx^+cosφy^z^=z^ ρ^=ρ^φ^=φ^z^=z^ ρ^=ρr^+zθ^ρ2+z2φ^=φ^z^=zr^ρθ^ρ2+z2
Spherical r^=sinθ(cosφx^+sinφy^)+cosθz^θ^=cosθ(cosφx^+sinφy^)sinθz^φ^=sinφx^+cosφy^ r^=sinθρ^+cosθz^θ^=cosθρ^sinθz^φ^=φ^ r^=r^θ^=θ^φ^=φ^

Del formula

Table with the del operator in cartesian, cylindrical and spherical coordinates
Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ),
where θ is the polar angle and φ is the azimuthal angleα
Vector field A Axx^+Ayy^+Azz^ Aρρ^+Aφφ^+Azz^ Arr^+Aθθ^+Aφφ^
Gradient f[1] fxx^+fyy^+fzz^ fρρ^+1ρfφφ^+fzz^ frr^+1rfθθ^+1rsinθfφφ^
Divergence ∇ ⋅ A[1] Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAφφ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAφφ
Curl ∇ × A[1] (AzyAyz)x^+(AxzAzx)y^+(AyxAxy)z^ (1ρAzφAφz)ρ^+(AρzAzρ)φ^+1ρ((ρAφ)ρAρφ)z^ 1rsinθ(θ(Aφsinθ)Aθφ)r^+1r(1sinθArφr(rAφ))θ^+1r(r(rAθ)Arθ)φ^
Laplace operator 2f ≡ ∆f[1] 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fφ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2
Vector gradient Aβ Axxx^x^+Axyx^y^+Axzx^z^+Ayxy^x^+Ayyy^y^+Ayzy^z^+Azxz^x^+Azyz^y^+Azzz^z^ Aρρρ^ρ^+(1ρAρφAφρ)ρ^φ^+Aρzρ^z^+Aφρφ^ρ^+(1ρAφφ+Aρρ)φ^φ^+Aφzφ^z^+Azρz^ρ^+1ρAzφz^φ^+Azzz^z^ Arrr^r^+(1rArθAθr)r^θ^+(1rsinθArφAφr)r^φ^+Aθrθ^r^+(1rAθθ+Arr)θ^θ^+(1rsinθAθφcotθAφr)θ^φ^+Aφrφ^r^+1rAφθφ^θ^+(1rsinθAφφ+cotθAθr+Arr)φ^φ^
Vector Laplacian 2A ≡ ∆A[2] 2Axx^+2Ayy^+2Azz^

(2AρAρρ22ρ2Aφφ)ρ^+(2AφAφρ2+2ρ2Aρφ)φ^+2Azz^

(2Ar2Arr22r2sinθ(Aθsinθ)θ2r2sinθAφφ)r^+(2AθAθr2sin2θ+2r2Arθ2cosθr2sin2θAφφ)θ^+(2AφAφr2sin2θ+2r2sinθArφ+2cosθr2sin2θAθφ)φ^

Directional derivative (A ⋅ ∇)B[3] ABxx^+AByy^+ABzz^ (AρBρρ+AφρBρφ+AzBρzAφBφρ)ρ^+(AρBφρ+AφρBφφ+AzBφz+AφBρρ)φ^+(AρBzρ+AφρBzφ+AzBzz)z^

(ArBrr+AθrBrθ+AφrsinθBrφAθBθ+AφBφr)r^+(ArBθr+AθrBθθ+AφrsinθBθφ+AθBrrAφBφcotθr)θ^+(ArBφr+AθrBφθ+AφrsinθBφφ+AφBrr+AφBθcotθr)φ^

Tensor divergence ∇ ⋅ Tγ

(Txxx+Tyxy+Tzxz)x^+(Txyx+Tyyy+Tzyz)y^+(Txzx+Tyzy+Tzzz)z^

[Tρρρ+1ρTφρφ+Tzρz+1ρ(TρρTφφ)]ρ^+[Tρφρ+1ρTφφφ+Tzφz+1ρ(Tρφ+Tφρ)]φ^+[Tρzρ+1ρTφzφ+Tzzz+Tρzρ]z^

[Trrr+2Trrr+1rTθrθ+cotθrTθr+1rsinθTφrφ1r(Tθθ+Tφφ)]r^+[Trθr+2Trθr+1rTθθθ+cotθrTθθ+1rsinθTφθφ+TθrrcotθrTφφ]θ^+[Trφr+2Trφr+1rTθφθ+1rsinθTφφφ+Tφrr+cotθr(Tθφ+Tφθ)]φ^

Differential displacement d[1] dxx^+dyy^+dzz^ dρρ^+ρdφφ^+dzz^ drr^+rdθθ^+rsinθdφφ^
Differential normal area dS dydzx^+dxdzy^+dxdyz^ ρdφdzρ^+dρdzφ^+ρdρdφz^ r2sinθdθdφr^+rsinθdrdφθ^+rdrdθφ^
Differential volume dV[1] dxdydz ρdρdφdz r2sinθdrdθdφ
This page uses θ for the polar angle and φ for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses θ for the azimuthal angle and φ for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch θ and φ in the formulae shown in the table above.
Defined in Cartesian coordinates as iAei. An alternative definition is eiiA.
Defined in Cartesian coordinates as eiiT. An alternative definition is iTei.

Calculation rules

  1. divgradff2f
  2. curlgradf×f=0
  3. divcurlA(×A)=0
  4. curlcurlA×(×A)=(A)2A (Lagrange's formula for del)
  5. 2(fg)=f2g+2fg+g2f
  6. 2(PQ)=Q2PP2Q+2[(P)Q+P××Q] (From [4] )

Cartesian derivation

File:Nabla cartesian.svg divA=limV0VAdSVdV=Ax(x+dx)dydzAx(x)dydz+Ay(y+dy)dxdzAy(y)dxdz+Az(z+dz)dxdyAz(z)dxdydxdydz=Axx+Ayy+Azz (curlA)x=limSx^0SAdSdS=Az(y+dy)dzAz(y)dz+Ay(z)dyAy(z+dz)dydydz=AzyAyz The expressions for (curlA)y and (curlA)z are found in the same way.

Cylindrical derivation

File:Nabla cylindrical2.svg divA=limV0VAdSVdV=Aρ(ρ+dρ)(ρ+dρ)dϕdzAρ(ρ)ρdϕdz+Aϕ(ϕ+dϕ)dρdzAϕ(ϕ)dρdz+Az(z+dz)dρ(ρ+dρ/2)dϕAz(z)dρ(ρ+dρ/2)dϕρdϕdρdz=1ρ(ρAρ)ρ+1ρAϕϕ+Azz (curlA)ρ=limSρ^0SAdSdS=Aϕ(z)(ρ+dρ)dϕAϕ(z+dz)(ρ+dρ)dϕ+Az(ϕ+dϕ)dzAz(ϕ)dz(ρ+dρ)dϕdz=Aϕz+1ρAzϕ (curlA)ϕ=limSϕ^0SAdSdS=Az(ρ)dzAz(ρ+dρ)dz+Aρ(z+dz)dρAρ(z)dρdρdz=Azρ+Aρz (curlA)z=limSz^0SAdSdS=Aρ(ϕ)dρAρ(ϕ+dϕ)dρ+Aϕ(ρ+dρ)(ρ+dρ)dϕAϕ(ρ)ρdϕρdρdϕ=1ρAρϕ+1ρ(ρAϕ)ρ curlA=(curlA)ρρ^+(curlA)ϕϕ^+(curlA)zz^=(1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)z^

Spherical derivation

File:Nabla spherical2.svg divA=limV0VAdSVdV=Ar(r+dr)(r+dr)dθ(r+dr)sinθdϕAr(r)rdθrsinθdϕ+Aθ(θ+dθ)sin(θ+dθ)rdrdϕAθ(θ)sin(θ)rdrdϕ+Aϕ(ϕ+dϕ)rdrdθAϕ(ϕ)rdrdθdrrdθrsinθdϕ=1r2(r2Ar)r+1rsinθ(Aθsinθ)θ+1rsinθAϕϕ (curlA)r=limSr^0SAdSdS=Aθ(ϕ)rdθ+Aϕ(θ+dθ)rsin(θ+dθ)dϕAθ(ϕ+dϕ)rdθAϕ(θ)rsin(θ)dϕrdθrsinθdϕ=1rsinθ(Aϕsinθ)θ1rsinθAθϕ (curlA)θ=limSθ^0SAdSdS=Aϕ(r)rsinθdϕ+Ar(ϕ+dϕ)drAϕ(r+dr)(r+dr)sinθdϕAr(ϕ)drdrrsinθdϕ=1rsinθArϕ1r(rAϕ)r (curlA)ϕ=limSϕ^0SAdSdS=Ar(θ)dr+Aθ(r+dr)(r+dr)dθAr(θ+dθ)drAθ(r)rdθrdrdθ=1r(rAθ)r1rArθ curlA=(curlA)rr^+(curlA)θθ^+(curlA)ϕϕ^=1rsinθ((Aϕsinθ)θAθϕ)r^+1r(1sinθArϕ(rAϕ)r)θ^+1r((rAθ)rArθ)ϕ^

Unit vector conversion formula

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector r to change in u direction. Therefore, ru=suu where s is the arc length parameter. For two sets of coordinate systems ui and vj, according to chain rule, dr=iruidui=isuiu^idui=jsvjv^jdvj=jsvjv^jivjuidui=ijsvjvjuiv^jdui. Now, we isolate the ith component. For ik, let duk=0. Then divide on both sides by dui to get: suiu^i=jsvjvjuiv^j.

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Griffiths, David J. (2012). Introduction to Electrodynamics. Pearson. ISBN 978-0-321-85656-2.
  2. Arfken, George; Weber, Hans; Harris, Frank (2012). Mathematical Methods for Physicists (Seventh ed.). Academic Press. p. 192. ISBN 9789381269558.
  3. Weisstein, Eric W. "Convective Operator". Mathworld. Retrieved 23 March 2011.
  4. Fernández-Guasti, M. (2012). "Green's Second Identity for Vector Fields". ISRN Mathematical Physics. 2012. Hindawi Limited: 1–7. doi:10.5402/2012/973968. ISSN 2090-4681.

External links