Dixon elliptic functions

From The Right Wiki
Jump to navigationJump to search
File:Dixon cm, sm functions.png
The Dixon elliptic functions cm, sm applied to a real-valued argument x. Both functions are periodic with real period π3 ≈ 5.29991625

In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions (doubly periodic meromorphic functions on the complex plane) that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity cm3z+sm3z=1, as real functions they parametrize the cubic Fermat curve x3+y3=1, just as the trigonometric functions sine and cosine parametrize the unit circle x2+y2=1. They were named sm and cm by Alfred Dixon in 1890, by analogy to the trigonometric functions sine and cosine and the Jacobi elliptic functions sn and cn; Göran Dillner described them earlier in 1873.[1]

Definition

The functions sm and cm can be defined as the solutions to the initial value problem:[2]

ddzcmz=sm2z,ddzsmz=cm2z,cm(0)=1,sm(0)=0

Or as the inverse of the Schwarz–Christoffel mapping from the complex unit disk to an equilateral triangle, the Abelian integral:[3]

z=0smzdw(1w3)2/3=cmz1dw(1w3)2/3

which can also be expressed using the hypergeometric function:[4]

sm1(z)=z2F1(13,23;43;z3)

Parametrization of the cubic Fermat curve

File:Dixon cm, sm on the cubic Fermat curve.png
The function t ↦ (cm t, sm t) parametrizes the cubic Fermat curve, with area of the sector equal to half the argument t.

Both sm and cm have a period along the real axis of π3=B(13,13)=32πΓ3(13)5.29991625 with B the beta function and Γ the gamma function:[5]

13π3=0dx(1x3)2/3=01dx(1x3)2/3=1dx(1x3)2/31.76663875

They satisfy the identity cm3z+sm3z=1. The parametric function t(cmt,smt), t[13π3,23π3] parametrizes the cubic Fermat curve x3+y3=1, with 12t representing the signed area lying between the segment from the origin to (1,0), the segment from the origin to (cmt,smt), and the Fermat curve, analogous to the relationship between the argument of the trigonometric functions and the area of a sector of the unit circle.[6] To see why, apply Green's theorem:

A=120t(xdyydx)=120t(cm3t+sm3t)dt=120tdt=12t.

Notice that the area between the x+y=0 and x3+y3=1 can be broken into three pieces, each of area 16π3:

12π3=((1x3)1/3+x)dx16π3=0((1x3)1/3+x)dx=01(1x3)1/3dx.

Symmetries

File:Sm in the complex plane.svg
The Dixon elliptic function sm z in the complex plane, illustrating its double periodicity (ω = e2πi/3).[7]

The function smz has zeros at the complex-valued points z=13π3i(a+bω) for any integers a and b, where ω is a cube root of unity, ω=exp23iπ=12+32i (that is, a+bω is an Eisenstein integer). The function cmz has zeros at the complex-valued points z=13π3+13π3i(a+bω). Both functions have poles at the complex-valued points z=13π3+13π3i(a+bω). On the real line, smx=0xπ3, which is analogous to sinx=0xπ.

Fundamental reflections, rotations, and translations

Both cm and sm commute with complex conjugation,

cmz¯=cmz,smz¯=smz.

Analogous to the parity of trigonometric functions (cosine an even function and sine an odd function), the Dixon function cm is invariant under 13 turn rotations of the complex plane, and 13 turn rotations of the domain of sm cause 13 turn rotations of the codomain:

cmωz=cmz=cmω2z,smωz=ωsmz=ω2smω2z.

Each Dixon elliptic function is invariant under translations by the Eisenstein integers a+bω scaled by π3,

cm(z+π3(a+bω))=cmz,sm(z+π3(a+bω))=smz.

Negation of each of cm and sm is equivalent to a 13π3 translation of the other,

cm(z)=1cmz=sm(z+13π3),sm(z)=smzcmz=1sm(z13π3)=cm(z+13π3).

For n{0,1,2}, translations by 13π3ω give

cm(z+13ωnπ3)=ω2nsmzcmz,sm(z+13ωnπ3)=ωn1cmz.

Specific values

z cmz smz
13π3
16π3 23 1
0 1 0
16π3 1/23 1/23
13π3 0 1
12π3 1 23
23π3

More specific values

z cmz smz
14π3 1+3+232 13+2343
29π3 362sin(19π) 2cos(118π)36
19π3 2sin(29π)36 362cos(118π)
112π3 1+3+23223 1+323223
112π3 1+3+2343 1+3232
19π3 362sin(29π) 2sin(19π)36
29π3 2sin(19π)36 362sin(29π)
14π3 1+3232 1+3+2343
512π3 1+323223 1+3+23223
49π3 362cos(118π) 2sin(29π)36
59π3 2cos(118π)36 362sin(19π)
712π3 13+2343 1+3+232

Sum and difference identities

The Dixon elliptic functions satisfy the argument sum and difference identities:[8]

cm(u+v)=smucmusmvcmvsmucm2vcm2usmvcm(uv)=cm2ucmvsmusm2vcmucm2vsm2usmvsm(u+v)=sm2ucmvcmusm2vsmucm2vcm2usmvsm(uv)=smucmusmvcmvcmucm2vsm2usmv

These formulas can be used to compute the complex-valued functions in real components:[citation needed]

cm(x+ωy)=smxcmxωsmycmysmxcm2yωcm2xsmy=cmx(sm2xcm2y+cmxsm2ycmy+smxcm2xsmy)sm2xcm4y+smxcm2xsmycm2y+cm4xsm2y+ωsmxsmy(cm3xcm3y)sm2xcm4y+smxcm2xsmycm2y+cm4xsm2ysm(x+ωy)=sm2xcmyω2cmxsm2ysmxcm2yωcm2xsmy=smx(smxcmxcm2y+smycm3x+smycm3y)sm2xcm4y+smxcm2xsmycm2y+cm4xsm2y+ωsmy(smxcm3x+smxcm3y+cm2xsmycmy)sm2xcm4y+smxcm2xsmycm2y+cm4xsm2y

Multiple-argument identities

Argument duplication and triplication identities can be derived from the sum identity:[9]

cm2u=cm3usm3ucmu(1+sm3u)=2cm3u12cmucm4u,sm2u=smu(1+cm3u)cmu(1+sm3u)=2smusm4u2cmucm4u,cm3u=cm9u6cm6u+3cm3u+1cm9u+3cm6u6cm3u+1,sm3u=3smucmu(sm3ucm3u1)cm9u+3cm6u6cm3u+1.

From these formulas it can be deduced that expressions in form cm(kπ32n3m) and sm(kπ32n3m) are either signless infinities, or origami-constructibles for any n,m,k (In this paragraph, 𝕄= set of all origami-constructibles {}). Because by finding cm(x2), quartic or lesser degree in some cases equation has to be solved as seen from duplication formula which means that if cmx𝕄, then cm(x2)𝕄. To find one-third of argument value of cm, equation which is reductible to cubic or lesser degree in some cases by variable exchange t=x3 has to be solved as seen from triplication formula from that follows: if cmx𝕄 then cm(x3)𝕄 is true. Statement cmx𝕄 cm(nx)𝕄 is true, because any multiple argument formula is a rational function. If cmx𝕄, then smx𝕄 because smx=ωp1cm3x3 where p{0,1,2}.

Specific value identities

The cm function satisfies the identities cm29π3=cm19π3cm49π3,cm14π3=cl13ϖ, where cl is lemniscate cosine and ϖ is Lemniscate constant.[citation needed]

Power series

The cm and sm functions can be approximated for |z|<13π3 by the Taylor series

cmz=c0+c1z3+c2z6+c3z9++cnz3n+smz=s0z+s1z4+s2z7+s3z10++snz3n+1+

whose coefficients satisfy the recurrence c0=s0=1,[10]

cn=13nk=0n1sksn1ksn=13n+1k=0nckcnk

These recurrences result in:[11]

cmz=113z3+118z6232268z9+2513608z126191857492z15+smz=z16z4+263z7132268z10+2322113z13280314859936z16+

Relation to other elliptic functions

Weierstrass elliptic function

File:Weierstrass cubic curve related to the Dixon elliptic functions.png
Elliptic curve y2=4x3127 for the Weierstrass ℘-function z(z;0,127) related to the Dixon elliptic functions.

The equianharmonic Weierstrass elliptic function (z)=(z;0,127), with lattice Λ=π3π3ω a scaling of the Eisenstein integers, can be defined as:[12]

(z)=1z2+λΛ{0}(1(zλ)21λ2)

The function (z) solves the differential equation:

(z)2=4(z)3127

We can also write it as the inverse of the integral:

z=(z)dw4w3127

In terms of (z), the Dixon elliptic functions can be written:[13]

Failed to parse (syntax error): {\displaystyle \operatorname{cm} z = \frac{3\wp'(z) + 1}{3\wp'(z) - 1},\ \operatorname{sm} z = \frac{-6\wp(z)}{3\wp'(z) - 1}}

Likewise, the Weierstrass elliptic function (z)=(z;0,127) can be written in terms of Dixon elliptic functions:

Failed to parse (syntax error): {\displaystyle \wp'(z) = \frac{\operatorname{cm} z + 1}{3(\operatorname{cm} z - 1)},\ \wp(z) = \frac{-\operatorname{sm} z}{3(\operatorname{cm} z - 1)}}

Jacobi elliptic functions

The Dixon elliptic functions can also be expressed using Jacobi elliptic functions, which was first observed by Cayley.[14] Let k=e5iπ/6, θ=314e5iπ/12, s=sn(u,k), c=cn(u,k), and d=dn(u,k). Then, let

ξ(u)=1+θscd1+θscd, η(u)=21/3(1+θ2s2)1+θscd.

Finally, the Dixon elliptic functions are as so:

sm(z)=ξ(z+π3/621/3θ), cm(z)=η(z+π3/621/3θ).

Generalized trigonometry

Several definitions of generalized trigonometric functions include the usual trigonometric sine and cosine as an n=2 case, and the functions sm and cm as an n=3 case.[15] For example, defining πn=B(1n,1n) and sinnz,cosnz the inverses of an integral:

z=0sinnzdw(1wn)(n1)/n=cosnz1dw(1wn)(n1)/n

The area in the positive quadrant under the curve xn+yn=1 is

01(1xn)1/ndx=πn2n.

The quartic n=4 case results in a square lattice in the complex plane, related to the lemniscate elliptic functions.

Applications

File:Conformal map projection from globe to octahedron.png
A conformal map projection of the globe onto an octahedron. Because the octahedron has equilateral triangle faces, this projection can be described in terms of sm and cm functions.

The Dixon elliptic functions are conformal maps from an equilateral triangle to a disk, and are therefore helpful for constructing polyhedral conformal map projections involving equilateral triangles, for example projecting the sphere onto a triangle, hexagon, tetrahedron, octahedron, or icosahedron.[16]

See also

Notes

  1. Dixon (1890), Dillner (1873). Dillner uses the symbols W=sm,W1=cm.
  2. Dixon (1890), Van Fossen Conrad & Flajolet (2005), Robinson (2019).
  3. The mapping for a general regular polygon is described in Schwarz (1869).
  4. van Fossen Conrad & Flajolet (2005) p. 6.
  5. Dillner (1873) calls the period 3w. Dixon (1890) calls it 3λ; Adams (1925) and Robinson (2019) each call it 3K. Van Fossen Conrad & Flajolet (2005) call it π3. Also see OEIS A197374.
  6. Dixon (1890), Van Fossen Conrad & Flajolet (2005)
  7. Dark areas represent zeros, and bright areas represent poles. As the argument of smz goes from π to π, the colors go through cyan, blue (Argπ/2), magneta, red (Arg0), orange, yellow (Argπ/2), green, and back to cyan (Argπ).
  8. Dixon (1890), Adams (1925)
  9. Dixon (1890), p. 185–186. Robinson (2019).
  10. Adams (1925)
  11. van Fossen Conrad & Flajolet (2005). Also see OEIS A104133, A104134.
  12. Reinhardt & Walker (2010)
  13. Chapling (2018), Robinson (2019). Adams (1925) instead expresses the Dixon elliptic functions in terms of the Weierstrass elliptic function (z;0,1).
  14. van Fossen Conrad & Flajolet (2005), p.38
  15. Lundberg (1879), Grammel (1948), Shelupsky (1959), Burgoyne (1964), Gambini, Nicoletti, & Ritelli (2021).
  16. Adams (1925), Cox (1935), Magis (1938), Lee (1973), Lee (1976), McIlroy (2011), Chapling (2016).

References

  • O. S. Adams (1925). Elliptic functions applied to conformal world maps (No. 297). US Government Printing Office. ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cgs_specpubs/QB275U35no1121925.pdf
  • R. Bacher & P. Flajolet (2010) “Pseudo-factorials, elliptic functions, and continued fractions” The Ramanujan journal 21(1), 71–97. https://arxiv.org/pdf/0901.1379.pdf
  • A. Cayley (1882) “Reduction of dx/(1x3)2/3 to elliptic integrals”. Messenger of Mathematics 11, 142–143. https://gdz.sub.uni-goettingen.de/id/PPN599484047_0011?tify={%22pages%22:%5b146%5d}
  • F. D. Burgoyne (1964) “Generalized trigonometric functions”. Mathematics of Computation 18(86), 314–316. https://www.jstor.org/stable/2003310
  • A. Cayley (1883) “On the elliptic function solution of the equation x3 + y3 − 1 = 0”, Proceedings of the Cambridge Philosophical Society 4, 106–109. https://archive.org/details/proceedingsofcam4188083camb/page/106/
  • R. Chapling (2016) “Invariant Meromorphic Functions on the Wallpaper Groups”. https://arxiv.org/pdf/1608.05677
  • J. F. Cox (1935) “Répresentation de la surface entière de la terre dans une triangle équilatéral”, Bulletin de la Classe des Sciences, Académie Royale de Belgique 5e, 21, 66–71.
  • G. Dillner (1873) “Traité de calcul géométrique supérieur”, Chapter 16, Nova acta Regiae Societatis Scientiarum Upsaliensis, Ser. III 8, 94–102. https://archive.org/details/novaactaregiaeso38kung/page/94/
  • Dixon, A. C. (1890). "On the doubly periodic functions arising out of the curve x3 + y3 − 3αxy = 1". Quarterly Journal of Pure and Applied Mathematics. XXIV: 167–233.
  • A. Dixon (1894) The elementary properties of the elliptic functions. MacMillian. https://archive.org/details/elempropellipt00dixorich/
  • Van Fossen Conrad, Eric; Flajolet, Philippe (2005). "The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion". Séminaire Lotharingien de Combinatoire. 54: Art. B54g, 44. arXiv:math/0507268. Bibcode:2005math......7268V. MR 2223029.
  • A. Gambini, G. Nicoletti, & D. Ritelli (2021) “Keplerian trigonometry”. Monatshefte für Mathematik 195(1), 55–72. https://doi.org/10.1007/s00605-021-01512-0
  • R. Grammel (1948) “Eine Verallgemeinerung der Kreis-und Hyperbelfunktionen”. Archiv der Mathematik 1(1), 47–51. https://doi.org/10.1007/BF02038206
  • J. C. Langer & D. A. Singer (2014) “The Trefoil”. Milan Journal of Mathematics 82(1), 161–182. https://case.edu/artsci/math/langer/jlpreprints/Trefoil.pdf
  • M. Laurent (1949) “Tables de la fonction elliptique de Dixon pour l’intervalle 0-0, 1030”. Bulletin de l’Académie Royale des Sciences de Belgique Classe des Sciences, 35, 439–450.
  • L. P. Lee (1973) “The Conformal Tetrahedric Projection with some Practical Applications”. The Cartographic Journal, 10(1), 22–28. https://doi.org/10.1179/caj.1973.10.1.22
  • L. P. Lee (1976) Conformal Projections Based on Elliptic Functions. Toronto: B. V. Gutsell, York University. Cartographica Monographs No. 16. ISBN 0-919870-16-3. Supplement No. 1 to The Canadian Cartographer 13.
  • E. Lundberg (1879) “Om hypergoniometriska funktioner af komplexa variabla”. Manuscript, 1879. Translation by Jaak Peetre “On hypergoniometric functions of complex variables”. https://web.archive.org/web/20161024183030/http://www.maths.lth.se/matematiklu/personal/jaak/hypergf.ps
  • J. Magis (1938) “Calcul du canevas de la représentation conforme de la sphère entière dans un triangle équilatéral”. Bulletin Géodésique 59(1), 247–256. http://doi.org/10.1007/BF03029866
  • M. D. McIlroy (2011) “Wallpaper maps”. Dependable and Historic Computing. Springer. 358–375. https://link.springer.com/chapter/10.1007/978-3-642-24541-1_27
  • W. P. Reinhardt & P. L. Walker (2010) “Weierstrass Elliptic and Modular Functions”, NIST Digital Library of Mathematical Functions, §23.5(v). https://dlmf.nist.gov/23.5#v
  • P. L. Robinson (2019) “The Dixonian elliptic functions”. https://arxiv.org/abs/1901.04296
  • H. A. Schwarz (1869) “Ueber einige Abbildungsaufgaben”. Crelles Journal 1869(70), 105–120. http://doi.org/10.1515/crll.1869.70.105
  • B. R. Seth & F. P. White (1934) “Torsion of beams whose cross-section is a regular polygon of n sides”. Mathematical Proceedings of the Cambridge Philosophical Society, 30(2), 139. http://doi.org/10.1017/s0305004100016558 
  • D. Shelupsky (1959) “A generalization of the trigonometric functions”. The American Mathematical Monthly 66(10), 879–884. https://www.jstor.org/stable/2309789

External links