E-graph
In computer science, an e-graph is a data structure that stores an equivalence relation over terms of some language.
Definition and operations
Let be a set of uninterpreted functions, where is the subset of consisting of functions of arity . Let be a countable set of opaque identifiers that may be compared for equality, called e-class IDs. The application of to e-class IDs is denoted and called an e-node. The e-graph then represents equivalence classes of e-nodes, using the following data structures:[1]
- A union-find structure representing equivalence classes of e-class IDs, with the usual operations , and . An e-class ID is canonical if ; an e-node is canonical if each is canonical ( in ).
- An association of e-class IDs with sets of e-nodes, called e-classes. This consists of
- a hashcons (i.e. a mapping) from canonical e-nodes to e-class IDs, and
- an e-class map that maps e-class IDs to e-classes, such that maps equivalent IDs to the same set of e-nodes:
Invariants
In addition to the above structure, a valid e-graph conforms to several data structure invariants.[2] Two e-nodes are equivalent if they are in the same e-class. The congruence invariant states that an e-graph must ensure that equivalence is closed under congruence, where two e-nodes are congruent when . The hashcons invariant states that the hashcons maps canonical e-nodes to their e-class ID.
Operations
[icon] | This section needs expansion. You can help by adding to it. (June 2021) |
E-graphs expose wrappers around the , , and operations from the union-find that preserve the e-graph invariants. The last operation, e-matching, is described below.
Equivalent formulations
An e-graph can also be formulated as a bipartite graph where
- is the set of e-class IDs (as above),
- is the set of e-nodes, and
- is a set of directed edges.
There is a directed edge from each e-class to each of its members, and from each e-node to each of its children.[3]
E-matching
Let be a set of variables and let be the smallest set that includes the 0-arity function symbols (also called constants), includes the variables, and is closed under application of the function symbols. In other words, is the smallest set such that , , and when and , then . A term containing variables is called a pattern, a term without variables is called ground. An e-graph represents a ground term if one of its e-classes represents . An e-class represents if some e-node does. An e-node represents a term if and each e-class represents the term ( in ). e-matching is an operation that takes a pattern and an e-graph , and yields all pairs where is a substitution mapping the variables in to e-class IDs and is an e-class ID such that the term is represented by . There are several known algorithms for e-matching,[4][5] the relational e-matching algorithm is based on worst-case optimal joins and is worst-case optimal.[6]
Extraction
Given an e-class and a cost function that maps each function symbol in to a natural number, the extraction problem is to find a ground term with minimal total cost that is represented by the given e-class. This problem is NP-hard.[7] There is also no constant-factor approximation algorithm for this problem, which can be shown by reduction from the set cover problem. However, for graphs with bounded treewidth, there is a linear-time, fixed-parameter tractable algorithm.[8]
Complexity
- An e-graph with n equalities can be constructed in O(n log n) time.[9]
Equality saturation
[icon] | This section needs expansion. You can help by adding to it. (June 2021) |
Equality saturation is a technique for building optimizing compilers using e-graphs.[10] It operates by applying a set of rewrites using e-matching until the e-graph is saturated, a timeout is reached, an e-graph size limit is reached, a fixed number of iterations is exceeded, or some other halting condition is reached. After rewriting, an optimal term is extracted from the e-graph according to some cost function, usually related to AST size or performance considerations.
Applications
E-graphs are used in automated theorem proving. They are a crucial part of modern SMT solvers such as Z3[11] and CVC4, where they are used to decide the empty theory by computing the congruence closure of a set of equalities, and e-matching is used to instantiate quantifiers.[12] In DPLL(T)-based solvers that use conflict-driven clause learning (also known as non-chronological backtracking), e-graphs are extended to produce proof certificates.[13] E-graphs are also used in the Simplify theorem prover of ESC/Java.[14] Equality saturation is used in specialized optimizing compilers,[15] e.g. for deep learning[16] and linear algebra.[17] Equality saturation has also been used for translation validation applied to the LLVM toolchain.[18] E-graphs have been applied to several problems in program analysis, including fuzzing,[19] abstract interpretation,[20] and library learning.[21]
References
- ↑ (Willsey et al. 2021)
- ↑ (Willsey et al. 2021)
- ↑ (Goharshady, Lam & Parreaux 2024)
- ↑ (de Moura & Bjørner 2007)
- ↑ Moskal, Michał; Łopuszański, Jakub; Kiniry, Joseph R. (2008-05-06). "E-matching for Fun and Profit". Electronic Notes in Theoretical Computer Science. Proceedings of the 5th International Workshop on Satisfiability Modulo Theories (SMT 2007). 198 (2): 19–35. doi:10.1016/j.entcs.2008.04.078. ISSN 1571-0661.
- ↑ Zhang, Yihong; Wang, Yisu Remy; Willsey, Max; Tatlock, Zachary (2022-01-12). "Relational e-matching". Proceedings of the ACM on Programming Languages. 6 (POPL): 35:1–35:22. doi:10.1145/3498696. S2CID 236924583.
- ↑ Stepp, Michael Benjamin (2011). Equality saturation: engineering challenges and applications (PhD thesis). USA: University of California at San Diego. ISBN 978-1-267-03827-2.
- ↑ (Goharshady, Lam & Parreaux 2024)
- ↑ (Flatt et al. 2022, p. 2)
- ↑ (Tate et al. 2009)
- ↑ de Moura, Leonardo; Bjørner, Nikolaj (2008). "Z3: An Efficient SMT Solver". In Ramakrishnan, C. R.; Rehof, Jakob (eds.). Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science. Vol. 4963. Berlin, Heidelberg: Springer. pp. 337–340. doi:10.1007/978-3-540-78800-3_24. ISBN 978-3-540-78800-3.
- ↑ Rümmer, Philipp (2012). "E-Matching with Free Variables". In Bjørner, Nikolaj; Voronkov, Andrei (eds.). Logic for Programming, Artificial Intelligence, and Reasoning. Proceedings. 18th International Conference, LPAR-18, Merida, Venezuela, March 11–15, 2012. Lecture Notes in Computer Science. Vol. 7180. Berlin, Heidelberg: Springer. pp. 359–374. doi:10.1007/978-3-642-28717-6_28. ISBN 978-3-642-28717-6.
- ↑ (Flatt et al. 2022, p. 2)
- ↑ Detlefs, David; Nelson, Greg; Saxe, James B. (May 2005). "Simplify: a theorem prover for program checking". Journal of the ACM. 52 (3): 365–473. doi:10.1145/1066100.1066102. ISSN 0004-5411. S2CID 9613854.
- ↑ Joshi, Rajeev; Nelson, Greg; Randall, Keith (2002-05-17). "Denali: a goal-directed superoptimizer". ACM SIGPLAN Notices. 37 (5): 304–314. doi:10.1145/543552.512566. ISSN 0362-1340.
- ↑ Yang, Yichen; Phothilimtha, Phitchaya Mangpo; Wang, Yisu Remy; Willsey, Max; Roy, Sudip; Pienaar, Jacques (2021-03-17). "Equality Saturation for Tensor Graph Superoptimization". arXiv:2101.01332 [cs.AI].
- ↑ Wang, Yisu Remy; Hutchison, Shana; Leang, Jonathan; Howe, Bill; Suciu, Dan (2020-12-22). "SPORES: Sum-Product Optimization via Relational Equality Saturation for Large Scale Linear Algebra". arXiv:2002.07951 [cs.DB].
- ↑ Stepp, Michael; Tate, Ross; Lerner, Sorin (2011). "Equality-Based Translation Validator for LLVM". In Gopalakrishnan, Ganesh; Qadeer, Shaz (eds.). Computer Aided Verification. Lecture Notes in Computer Science. Vol. 6806. Berlin, Heidelberg: Springer. pp. 737–742. doi:10.1007/978-3-642-22110-1_59. ISBN 978-3-642-22110-1.
- ↑ "Wasm-mutate: Fuzzing WebAssembly Compilers with E-Graphs (EGRAPHS 2022) - PLDI 2022". pldi22.sigplan.org. Retrieved 2023-02-03.
- ↑ Coward, Samuel; Constantinides, George A.; Drane, Theo (2022-03-17). "Abstract Interpretation on E-Graphs". arXiv:2203.09191 [cs.LO].
Coward, Samuel; Constantinides, George A.; Drane, Theo (2022-05-30). "Combining E-Graphs with Abstract Interpretation". arXiv:2205.14989 [cs.DS]. - ↑ Cao, David; Kunkel, Rose; Nandi, Chandrakana; Willsey, Max; Tatlock, Zachary; Polikarpova, Nadia (2023-01-09). "babble: Learning Better Abstractions with E-Graphs and Anti-Unification". Proceedings of the ACM on Programming Languages. 7 (POPL): 396–424. arXiv:2212.04596. doi:10.1145/3571207. ISSN 2475-1421. S2CID 254536022.
- de Moura, Leonardo; Bjørner, Nikolaj (2007). "Efficient E-Matching for SMT Solvers". In Pfenning, Frank (ed.). Automated Deduction – CADE-21. Lecture Notes in Computer Science. Vol. 4603. Berlin, Heidelberg: Springer. pp. 183–198. doi:10.1007/978-3-540-73595-3_13. ISBN 978-3-540-73595-3.
- Willsey, Max; Nandi, Chandrakana; Wang, Yisu Remy; Flatt, Oliver; Tatlock, Zachary; Panchekha, Pavel (2021-01-04). "egg: Fast and extensible equality saturation". Proceedings of the ACM on Programming Languages. 5 (POPL): 23:1–23:29. arXiv:2004.03082. doi:10.1145/3434304. S2CID 226282597.
- Tate, Ross; Stepp, Michael; Tatlock, Zachary; Lerner, Sorin (2009-01-21). "Equality saturation". Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL '09. Savannah, GA, USA: Association for Computing Machinery. pp. 264–276. doi:10.1145/1480881.1480915. ISBN 978-1-60558-379-2. S2CID 2138086.
- Flatt, Oliver; Coward, Samuel; Willsey, Max; Tatlock, Zachary; Panchekha, Pavel (October 2022). "Small Proofs from Congruence Closure". In A. Griggio; N. Rungta (eds.). Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022. TU Wien Academic Press. pp. 75–83. doi:10.34727/2022/isbn.978-3-85448-053-2_13. ISBN 978-3-85448-053-2. S2CID 252118847.
- Goharshady, Amir Kafshdar; Lam, Chun Kit; Parreaux, Lionel (2024-10-08). "Fast and Optimal Extraction for Sparse Equality Graphs". Proceedings of the ACM on Programming Languages. 8 (OOPSLA2): 361:2551–361:2577. doi:10.1145/3689801.