Elliptic gamma function

From The Right Wiki
Jump to navigationJump to search

In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by

Γ(z;p,q)=m=0n=01pm+1qn+1/z1pmqnz.

It obeys several identities:

Γ(z;p,q)=1Γ(pq/z;p,q)
Γ(pz;p,q)=θ(z;q)Γ(z;p,q)

and

Γ(qz;p,q)=θ(z;p)Γ(z;p,q)

where θ is the q-theta function. When p=0, it essentially reduces to the infinite q-Pochhammer symbol:

Γ(z;0,q)=1(z;q).

Multiplication Formula

Define

Γ~(z;p,q):=(q;q)(p;p)(θ(q;p))1zm=0n=01pm+1qn+1z1pmqn+z.

Then the following formula holds with r=qn (Felder & Varchenko (2002)).

Γ~(nz;p,q)Γ~(1/n;p,r)Γ~(2/n;p,r)Γ~((n1)/n;p,r)=(θ(r;p)θ(q;p))nz1Γ~(z;p,r)Γ~(z+1/n;p,r)Γ~(z+(n1)/n;p,r).

References

  • Felder, G.; Varchenko, A. (2002). "Multiplication Formulas for the Elliptic Gamma Function". arXiv:math/0212155.
  • Jackson, F. H. (1905), "The Basic Gamma-Function and the Elliptic Functions", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 76 (508), The Royal Society: 127–144, Bibcode:1905RSPSA..76..127J, doi:10.1098/rspa.1905.0011, ISSN 0950-1207, JSTOR 92601
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Ruijsenaars, S. N. M. (1997), "First order analytic difference equations and integrable quantum systems", Journal of Mathematical Physics, 38 (2): 1069–1146, Bibcode:1997JMP....38.1069R, doi:10.1063/1.531809, ISSN 0022-2488, MR 1434226
  • Felder, Giovanni; Henriques, André; Rossi, Carlo A.; Zhu, Chenchang (2008). "A gerbe for the elliptic gamma function". Duke Mathematical Journal. 141. arXiv:math/0601337. doi:10.1215/S0012-7094-08-14111-0. S2CID 817920.