Faceting

From The Right Wiki
Jump to navigationJump to search

File:CubeAndStel.svg
Stella octangula as a faceting of the cube

In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new vertices. New edges of a faceted polyhedron may be created along face diagonals or internal space diagonals. A faceted polyhedron will have two faces on each edge and creates new polyhedra or compounds of polyhedra. Faceting is the reciprocal or dual process to stellation. For every stellation of some convex polytope, there exists a dual faceting of the dual polytope.

Faceted polygons

For example, a regular pentagon has one symmetry faceting, the pentagram, and the regular hexagon has two symmetric facetings, one as a polygon, and one as a compound of two triangles.

Pentagon Hexagon Decagon
File:Regular polygon 5.svg File:Regular polygon truncation 3 1.svg File:Regular polygon truncation 5 1.svg
Pentagram
{5/2}
Star hexagon Compound
2{3}
Decagram
{10/3}
Compound
2{5}
Compound
2{5/2}
Star decagon
File:Regular star polygon 5-2.svg File:Regular polygon truncation 3 2.svg File:Regular star figure 2(3,1).svg File:Regular star polygon 10-3.svg File:Regular star figure 2(5,1).svg File:Regular star figure 2(5,2).svg File:Regular polygon truncation 5 2.svg File:Regular polygon truncation 5 3.svg File:Regular star truncation 5-3 2.svg File:Regular star truncation 5-3 3.svg

Faceted polyhedra

The regular icosahedron can be faceted into three regular Kepler–Poinsot polyhedra: small stellated dodecahedron, great dodecahedron, and great icosahedron. They all have 30 edges.

Convex Regular stars
icosahedron great dodecahedron small stellated dodecahedron great icosahedron
File:Icosahedron.png File:Great dodecahedron.png File:Small stellated dodecahedron.png File:Great icosahedron.png

The regular dodecahedron can be faceted into one regular Kepler–Poinsot polyhedron, three uniform star polyhedra, and three regular polyhedral compound. The uniform stars and compound of five cubes are constructed by face diagonals. The excavated dodecahedron is a facetting with star hexagon faces.

Convex Regular star Uniform stars Vertex-transitive
dodecahedron great stellated dodecahedron Small ditrigonal icosi-dodecahedron Ditrigonal dodeca-dodecahedron Great ditrigonal icosi-dodecahedron Excavated dodecahedron
File:Dodecahedron.png File:Great stellated dodecahedron.png File:Small ditrigonal icosidodecahedron.png File:Ditrigonal dodecadodecahedron.png File:Great ditrigonal icosidodecahedron.png File:Excavated dodecahedron highlighted.png
Convex Regular compounds
dodecahedron five tetrahedra five cubes ten tetrahedra
File:Dodecahedron.png File:Compound of five tetrahedra.png File:Compound of five cubes.png File:Compound of ten tetrahedra.png

History

Faceting has not been studied as extensively as stellation.

References

Notes

  1. Mathematical Treasure: Wenzel Jamnitzer's Platonic Solids by Frank J. Swetz (2013): "In this study of the five Platonic solids, Jamnitzer truncated, stellated, and faceted the regular solids [...]"

Bibliography

  • Bertrand, J. Note sur la théorie des polyèdres réguliers, Comptes rendus des séances de l'Académie des Sciences, 46 (1858), pp. 79–82.
  • Bridge, N.J. Facetting the dodecahedron, Acta crystallographica A30 (1974), pp. 548–552.
  • Inchbald, G. Facetting diagrams, The mathematical gazette, 90 (2006), pp. 253–261.
  • Alan Holden, Shapes, Space, and Symmetry. New York: Dover, 1991. p.94

External links

  • Weisstein, Eric W. "Faceting". MathWorld.
  • Olshevsky, George. "Faceting". Glossary for Hyperspace. Archived from the original on 4 February 2007.