Fibonacci sequence

From The Right Wiki
(Redirected from Fibonacci ratio)
Jump to navigationJump to search

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1[1][2] and some (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the sequence begins[3]

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....
File:Fibonacci Squares.svg
A tiling with squares whose side lengths are successive Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13 and 21

The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths.[4][5][6] They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book Liber Abaci.[7] Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci Quarterly. Applications of Fibonacci numbers include computer algorithms such as the Fibonacci search technique and the Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting parallel and distributed systems. They also appear in biological settings, such as branching in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering of an artichoke, and the arrangement of a pine cone's bracts, though they do not occur in all species. Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases. Fibonacci numbers are also closely related to Lucas numbers, which obey the same recurrence relation and with the Fibonacci numbers form a complementary pair of Lucas sequences.

Definition

File:Fibonacci Spiral.svg
The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling (see preceding image)

The Fibonacci numbers may be defined by the recurrence relation[8] F0=0,F1=1, and Fn=Fn1+Fn2 for n > 1. Under some older definitions, the value F0=0 is omitted, so that the sequence starts with F1=F2=1, and the recurrence Fn=Fn1+Fn2 is valid for n > 2.[9][10] The first 20 Fibonacci numbers Fn are:[3]

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

History

India

File:Fibonacci Sanskrit prosody.svg
Thirteen (F7) ways of arranging long and short syllables in a cadence of length six. Eight (F6) end with a short syllable and five (F5) end with a long syllable.

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.[5][11][12] In the Sanskrit poetic tradition, there was interest in enumerating all patterns of long (L) syllables of 2 units duration, juxtaposed with short (S) syllables of 1 unit duration. Counting the different patterns of successive L and S with a given total duration results in the Fibonacci numbers: the number of patterns of duration m units is Fm+1.[6] Knowledge of the Fibonacci sequence was expressed as early as Pingala (c. 450 BC–200 BC). Singh cites Pingala's cryptic formula misrau cha ("the two are mixed") and scholars who interpret it in context as saying that the number of patterns for m beats (Fm+1) is obtained by adding one [S] to the Fm cases and one [L] to the Fm−1 cases.[13] Bharata Muni also expresses knowledge of the sequence in the Natya Shastra (c. 100 BC–c. 350 AD).[14][4] However, the clearest exposition of the sequence arises in the work of Virahanka (c. 700 AD), whose own work is lost, but is available in a quotation by Gopala (c. 1135):[12]

Variations of two earlier meters [is the variation] ... For example, for [a meter of length] four, variations of meters of two [and] three being mixed, five happens. [works out examples 8, 13, 21] ... In this way, the process should be followed in all mātrā-vṛttas [prosodic combinations].[lower-alpha 1]

Hemachandra (c. 1150) is credited with knowledge of the sequence as well,[4] writing that "the sum of the last and the one before the last is the number ... of the next mātrā-vṛtta."[16][17]

Europe

File:Liber abbaci magliab f124r.jpg
A page of Fibonacci's Liber Abaci from the Biblioteca Nazionale di Firenze showing (in box on right) 13 entries of the Fibonacci sequence:
the indices from present to XII (months) as Latin ordinals and Roman numerals and the numbers (of rabbit pairs) as Hindu-Arabic numerals starting with 1, 2, 3, 5 and ending with 377.

The Fibonacci sequence first appears in the book Liber Abaci (The Book of Calculation, 1202) by Fibonacci[18][19] where it is used to calculate the growth of rabbit populations.[20][21] Fibonacci considers the growth of an idealized (biologically unrealistic) rabbit population, assuming that: a newly born breeding pair of rabbits are put in a field; each breeding pair mates at the age of one month, and at the end of their second month they always produce another pair of rabbits; and rabbits never die, but continue breeding forever. Fibonacci posed the rabbit math problem: how many pairs will there be in one year?

  • At the end of the first month, they mate, but there is still only 1 pair.
  • At the end of the second month they produce a new pair, so there are 2 pairs in the field.
  • At the end of the third month, the original pair produce a second pair, but the second pair only mate to gestate for a month, so there are 3 pairs in all.
  • At the end of the fourth month, the original pair has produced yet another new pair, and the pair born two months ago also produces their first pair, making 5 pairs.

At the end of the n-th month, the number of pairs of rabbits is equal to the number of mature pairs (that is, the number of pairs in month n – 2) plus the number of pairs alive last month (month n – 1). The number in the n-th month is the n-th Fibonacci number.[22] The name "Fibonacci sequence" was first used by the 19th-century number theorist Édouard Lucas.[23]

File:Fibonacci Rabbits.svg
Solution to Fibonacci rabbit problem: In a growing idealized population, the number of rabbit pairs form the Fibonacci sequence. At the end of the nth month, the number of pairs is equal to Fn.

Relation to the golden ratio

Closed-form expression

Like every sequence defined by a homogeneous linear recurrence with constant coefficients, the Fibonacci numbers have a closed-form expression.[24] It has become known as Binet's formula, named after French mathematician Jacques Philippe Marie Binet, though it was already known by Abraham de Moivre and Daniel Bernoulli:[25] Fn=φnψnφψ=φnψn5, where φ=1+521.6180339887 is the golden ratio, and ψ is its conjugate:[26] ψ=152=1φ=1φ0.6180339887. Since ψ=φ1, this formula can also be written as Fn=φn(φ)n5=φn(φ)n2φ1. To see the relation between the sequence and these constants,[27] note that φ and ψ are both solutions of the equation x2=x+1 and thus xn=xn1+xn2, so the powers of φ and ψ satisfy the Fibonacci recursion. In other words, φn=φn1+φn2,ψn=ψn1+ψn2. It follows that for any values a and b, the sequence defined by Un=aφn+bψn satisfies the same recurrence, Un=aφn+bψn=a(φn1+φn2)+b(ψn1+ψn2)=aφn1+bψn1+aφn2+bψn2=Un1+Un2. If a and b are chosen so that U0 = 0 and U1 = 1 then the resulting sequence Un must be the Fibonacci sequence. This is the same as requiring a and b satisfy the system of equations: {a+b=0φa+ψb=1 which has solution a=1φψ=15,b=a, producing the required formula. Taking the starting values U0 and U1 to be arbitrary constants, a more general solution is: Un=aφn+bψn where a=U1U0ψ5,b=U0φU15.

Computation by rounding

Since |ψn5|<12 for all n ≥ 0, the number Fn is the closest integer to φn5. Therefore, it can be found by rounding, using the nearest integer function: Fn=φn5,n0. In fact, the rounding error quickly becomes very small as n grows, being less than 0.1 for n ≥ 4, and less than 0.01 for n ≥ 8. This formula is easily inverted to find an index of a Fibonacci number F: n(F)=logφ5F,F1. Instead using the floor function gives the largest index of a Fibonacci number that is not greater than F: nlargest(F)=logφ5(F+1/2),F0, where logφ(x)=ln(x)/ln(φ)=log10(x)/log10(φ), ln(φ)=0.481211,[28] and log10(φ)=0.208987.[29]

Magnitude

Since Fn is asymptotic to φn/5, the number of digits in Fn is asymptotic to nlog10φ0.2090n. As a consequence, for every integer d > 1 there are either 4 or 5 Fibonacci numbers with d decimal digits. More generally, in the base b representation, the number of digits in Fn is asymptotic to nlogbφ=nlogφlogb.

Limit of consecutive quotients

Johannes Kepler observed that the ratio of consecutive Fibonacci numbers converges. He wrote that "as 5 is to 8 so is 8 to 13, practically, and as 8 is to 13, so is 13 to 21 almost", and concluded that these ratios approach the golden ratio φ: [30][31] limnFn+1Fn=φ. This convergence holds regardless of the starting values U0 and U1, unless U1=U0/φ. This can be verified using Binet's formula. For example, the initial values 3 and 2 generate the sequence 3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, ... . The ratio of consecutive terms in this sequence shows the same convergence towards the golden ratio. In general, limnFn+mFn=φm, because the ratios between consecutive Fibonacci numbers approaches φ.

File:Fibonacci tiling of the plane and approximation to Golden Ratio.gif
Successive tilings of the plane and a graph of approximations to the golden ratio calculated by dividing each Fibonacci number by the previous

Decomposition of powers

Since the golden ratio satisfies the equation φ2=φ+1, this expression can be used to decompose higher powers φn as a linear function of lower powers, which in turn can be decomposed all the way down to a linear combination of φ and 1. The resulting recurrence relationships yield Fibonacci numbers as the linear coefficients: φn=Fnφ+Fn1. This equation can be proved by induction on n ≥ 1: φn+1=(Fnφ+Fn1)φ=Fnφ2+Fn1φ=Fn(φ+1)+Fn1φ=(Fn+Fn1)φ+Fn=Fn+1φ+Fn. For ψ=1/φ, it is also the case that ψ2=ψ+1 and it is also the case that ψn=Fnψ+Fn1. These expressions are also true for n < 1 if the Fibonacci sequence Fn is extended to negative integers using the Fibonacci rule Fn=Fn+2Fn+1.

Identification

Binet's formula provides a proof that a positive integer x is a Fibonacci number if and only if at least one of 5x2+4 or 5x24 is a perfect square.[32] This is because Binet's formula, which can be written as Fn=(φn(1)nφn)/5, can be multiplied by 5φn and solved as a quadratic equation in φn via the quadratic formula: φn=Fn5±5Fn2+4(1)n2. Comparing this to φn=Fnφ+Fn1=(Fn5+Fn+2Fn1)/2, it follows that

5Fn2+4(1)n=(Fn+2Fn1)2.

In particular, the left-hand side is a perfect square.

Matrix form

A 2-dimensional system of linear difference equations that describes the Fibonacci sequence is (Fk+2Fk+1)=(1110)(Fk+1Fk) alternatively denoted Fk+1=AFk, which yields Fn=AnF0. The eigenvalues of the matrix A are φ=12(1+5) and ψ=φ1=12(15) corresponding to the respective eigenvectors μ=(φ1),ν=(φ11). As the initial value is F0=(10)=15μ15ν, it follows that the nth term is Fn=15Anμ15Anν=15φnμ15(φ)nν=15(1+52)n(φ1)15(152)n(φ11). From this, the nth element in the Fibonacci series may be read off directly as a closed-form expression: Fn=15(1+52)n15(152)n. Equivalently, the same computation may be performed by diagonalization of A through use of its eigendecomposition: A=SΛS1,An=SΛnS1, where Λ=(φ00φ1),S=(φφ111). The closed-form expression for the nth element in the Fibonacci series is therefore given by (Fn+1Fn)=An(F1F0)=SΛnS1(F1F0)=S(φn00(φ)n)S1(F1F0)=(φφ111)(φn00(φ)n)15(1φ11φ)(10), which again yields Fn=φn(φ)n5. The matrix A has a determinant of −1, and thus it is a 2 × 2 unimodular matrix. This property can be understood in terms of the continued fraction representation for the golden ratio φ: φ=1+11+11+11+. The convergents of the continued fraction for φ are ratios of successive Fibonacci numbers: φn = Fn+1 / Fn is the n-th convergent, and the (n + 1)-st convergent can be found from the recurrence relation φn+1 = 1 + 1 / φn.[33] The matrix formed from successive convergents of any continued fraction has a determinant of +1 or −1. The matrix representation gives the following closed-form expression for the Fibonacci numbers: (1110)n=(Fn+1FnFnFn1). For a given n, this matrix can be computed in O(log n) arithmetic operations, using the exponentiation by squaring method. Taking the determinant of both sides of this equation yields Cassini's identity, (1)n=Fn+1Fn1Fn2. Moreover, since AnAm = An+m for any square matrix A, the following identities can be derived (they are obtained from two different coefficients of the matrix product, and one may easily deduce the second one from the first one by changing n into n + 1), FmFn+Fm1Fn1=Fm+n1,FmFn+1+Fm1Fn=Fm+n. In particular, with m = n, F2n1=Fn2+Fn12F2n1=(Fn1+Fn+1)Fn=(2Fn1+Fn)Fn=(2Fn+1Fn)Fn. These last two identities provide a way to compute Fibonacci numbers recursively in O(log n) arithmetic operations. This matches the time for computing the n-th Fibonacci number from the closed-form matrix formula, but with fewer redundant steps if one avoids recomputing an already computed Fibonacci number (recursion with memoization).[34]

Combinatorial identities

Combinatorial proofs

Most identities involving Fibonacci numbers can be proved using combinatorial arguments using the fact that Fn can be interpreted as the number of (possibly empty) sequences of 1s and 2s whose sum is n1. This can be taken as the definition of Fn with the conventions F0=0, meaning no such sequence exists whose sum is −1, and F1=1, meaning the empty sequence "adds up" to 0. In the following, |...| is the cardinality of a set:

F0=0=|{}|
F1=1=|{()}|
F2=1=|{(1)}|
F3=2=|{(1,1),(2)}|
F4=3=|{(1,1,1),(1,2),(2,1)}|
F5=5=|{(1,1,1,1),(1,1,2),(1,2,1),(2,1,1),(2,2)}|

In this manner the recurrence relation Fn=Fn1+Fn2 may be understood by dividing the Fn sequences into two non-overlapping sets where all sequences either begin with 1 or 2: Fn=|{(1,...),(1,...),...}|+|{(2,...),(2,...),...}| Excluding the first element, the remaining terms in each sequence sum to n2 or n3 and the cardinality of each set is Fn1 or Fn2 giving a total of Fn1+Fn2 sequences, showing this is equal to Fn. In a similar manner it may be shown that the sum of the first Fibonacci numbers up to the n-th is equal to the (n + 2)-th Fibonacci number minus 1.[35] In symbols: i=1nFi=Fn+21 This may be seen by dividing all sequences summing to n+1 based on the location of the first 2. Specifically, each set consists of those sequences that start (2,...),(1,2,...),..., until the last two sets {(1,1,...,1,2)},{(1,1,...,1)} each with cardinality 1. Following the same logic as before, by summing the cardinality of each set we see that

Fn+2=Fn+Fn1+...+|{(1,1,...,1,2)}|+|{(1,1,...,1)}|

... where the last two terms have the value F1=1. From this it follows that i=1nFi=Fn+21. A similar argument, grouping the sums by the position of the first 1 rather than the first 2 gives two more identities: i=0n1F2i+1=F2n and i=1nF2i=F2n+11. In words, the sum of the first Fibonacci numbers with odd index up to F2n1 is the (2n)-th Fibonacci number, and the sum of the first Fibonacci numbers with even index up to F2n is the (2n + 1)-th Fibonacci number minus 1.[36] A different trick may be used to prove i=1nFi2=FnFn+1 or in words, the sum of the squares of the first Fibonacci numbers up to Fn is the product of the n-th and (n + 1)-th Fibonacci numbers. To see this, begin with a Fibonacci rectangle of size Fn×Fn+1 and decompose it into squares of size Fn,Fn1,...,F1; from this the identity follows by comparing areas: File:Fibonacci Squares.svg

Symbolic method

The sequence (Fn)n is also considered using the symbolic method.[37] More precisely, this sequence corresponds to a specifiable combinatorial class. The specification of this sequence is Seq(𝒵+𝒵𝟐). Indeed, as stated above, the n-th Fibonacci number equals the number of combinatorial compositions (ordered partitions) of n1 using terms 1 and 2. It follows that the ordinary generating function of the Fibonacci sequence, i=0Fizi, is the rational function z1zz2.

Induction proofs

Fibonacci identities often can be easily proved using mathematical induction. For example, reconsider i=1nFi=Fn+21. Adding Fn+1 to both sides gives

i=1nFi+Fn+1=Fn+1+Fn+21

and so we have the formula for n+1 i=1n+1Fi=Fn+31 Similarly, add Fn+12 to both sides of i=1nFi2=FnFn+1 to give i=1nFi2+Fn+12=Fn+1(Fn+Fn+1) i=1n+1Fi2=Fn+1Fn+2

Binet formula proofs

The Binet formula is 5Fn=φnψn. This can be used to prove Fibonacci identities. For example, to prove that i=1nFi=Fn+21 note that the left hand side multiplied by 5 becomes 1+φ+φ2++φn(1+ψ+ψ2++ψn)=φn+11φ1ψn+11ψ1=φn+11ψψn+11φ=φn+2+φ+ψn+2ψφψ=φn+2ψn+2(φψ)=5(Fn+21) as required, using the facts φψ=1 and φψ=5 to simplify the equations.

Other identities

Numerous other identities can be derived using various methods. Here are some of them:[38]

Cassini's and Catalan's identities

Cassini's identity states that Fn2Fn+1Fn1=(1)n1 Catalan's identity is a generalization: Fn2Fn+rFnr=(1)nrFr2

d'Ocagne's identity

FmFn+1Fm+1Fn=(1)nFmn F2n=Fn+12Fn12=Fn(Fn+1+Fn1)=FnLn where Ln is the n-th Lucas number. The last is an identity for doubling n; other identities of this type are F3n=2Fn3+3FnFn+1Fn1=5Fn3+3(1)nFn by Cassini's identity. F3n+1=Fn+13+3Fn+1Fn2Fn3 F3n+2=Fn+13+3Fn+12Fn+Fn3 F4n=4FnFn+1(Fn+12+2Fn2)3Fn2(Fn2+2Fn+12) These can be found experimentally using lattice reduction, and are useful in setting up the special number field sieve to factorize a Fibonacci number. More generally,[38] Fkn+c=i=0k(ki)FciFniFn+1ki. or alternatively Fkn+c=i=0k(ki)Fc+iFniFn1ki. Putting k = 2 in this formula, one gets again the formulas of the end of above section Matrix form.

Generating function

The generating function of the Fibonacci sequence is the power series s(z)=k=0Fkzk=0+z+z2+2z3+3z4+5z5+. This series is convergent for any complex number z satisfying |z|<1/φ, and its sum has a simple closed form:[39] s(z)=z1zz2. This can be proved by multiplying by (1zz2): (1zz2)s(z)=k=0Fkzkk=0Fkzk+1k=0Fkzk+2=k=0Fkzkk=1Fk1zkk=2Fk2zk=0z0+1z10z1+k=2(FkFk1Fk2)zk=z, where all terms involving zk for k2 cancel out because of the defining Fibonacci recurrence relation. The partial fraction decomposition is given by s(z)=15(11φz11ψz) where φ=12(1+5) is the golden ratio and ψ=12(15) is its conjugate. The related function zs(1/z) is the generating function for the negafibonacci numbers, and s(z) satisfies the functional equation s(z)=s(1z). Using z equal to any of 0.01, 0.001, 0.0001, etc. lays out the first Fibonacci numbers in the decimal expansion of s(z). For example, s(0.001)=0.0010.998999=1000998999=0.001001002003005008013021.

Reciprocal sums

Infinite sums over reciprocal Fibonacci numbers can sometimes be evaluated in terms of theta functions. For example, the sum of every odd-indexed reciprocal Fibonacci number can be written as k=11F2k1=54ϑ2(0,352)2, and the sum of squared reciprocal Fibonacci numbers as k=11Fk2=524(ϑ2(0,352)4ϑ4(0,352)4+1). If we add 1 to each Fibonacci number in the first sum, there is also the closed form k=111+F2k1=52, and there is a nested sum of squared Fibonacci numbers giving the reciprocal of the golden ratio, k=1(1)k+1j=1kFj2=512. The sum of all even-indexed reciprocal Fibonacci numbers is[40] k=11F2k=5(L(ψ2)L(ψ4)) with the Lambert series L(q):=k=1qk1qk, since 1F2k=5(ψ2k1ψ2kψ4k1ψ4k). So the reciprocal Fibonacci constant is[41] k=11Fk=k=11F2k1+k=11F2k=3.359885666243 Moreover, this number has been proved irrational by Richard André-Jeannin.[42] Millin's series gives the identity[43] k=01F2k=752, which follows from the closed form for its partial sums as N tends to infinity: k=0N1F2k=3F2N1F2N.

Primes and divisibility

Divisibility properties

Every third number of the sequence is even (a multiple of F3=2) and, more generally, every k-th number of the sequence is a multiple of Fk. Thus the Fibonacci sequence is an example of a divisibility sequence. In fact, the Fibonacci sequence satisfies the stronger divisibility property[44][45] gcd(Fa,Fb,Fc,)=Fgcd(a,b,c,) where gcd is the greatest common divisor function. In particular, any three consecutive Fibonacci numbers are pairwise coprime because both F1=1 and F2=1. That is,

gcd(Fn,Fn+1)=gcd(Fn,Fn+2)=gcd(Fn+1,Fn+2)=1

for every n. Every prime number p divides a Fibonacci number that can be determined by the value of p modulo 5. If p is congruent to 1 or 4 modulo 5, then p divides Fp−1, and if p is congruent to 2 or 3 modulo 5, then, p divides Fp+1. The remaining case is that p = 5, and in this case p divides Fp. {p=5pFp,p±1(mod5)pFp1,p±2(mod5)pFp+1. These cases can be combined into a single, non-piecewise formula, using the Legendre symbol:[46] pFp(5p).

Primality testing

The above formula can be used as a primality test in the sense that if nFn(5n), where the Legendre symbol has been replaced by the Jacobi symbol, then this is evidence that n is a prime, and if it fails to hold, then n is definitely not a prime. If n is composite and satisfies the formula, then n is a Fibonacci pseudoprime. When m is large – say a 500-bit number – then we can calculate Fm (mod n) efficiently using the matrix form. Thus (Fm+1FmFmFm1)(1110)m(modn). Here the matrix power Am is calculated using modular exponentiation, which can be adapted to matrices.[47]

Fibonacci primes

A Fibonacci prime is a Fibonacci number that is prime. The first few are:[48]

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ...

Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many.[49] Fkn is divisible by Fn, so, apart from F4 = 3, any Fibonacci prime must have a prime index. As there are arbitrarily long runs of composite numbers, there are therefore also arbitrarily long runs of composite Fibonacci numbers. No Fibonacci number greater than F6 = 8 is one greater or one less than a prime number.[50] The only nontrivial square Fibonacci number is 144.[51] Attila Pethő proved in 2001 that there is only a finite number of perfect power Fibonacci numbers.[52] In 2006, Y. Bugeaud, M. Mignotte, and S. Siksek proved that 8 and 144 are the only such non-trivial perfect powers.[53] 1, 3, 21, and 55 are the only triangular Fibonacci numbers, which was conjectured by Vern Hoggatt and proved by Luo Ming.[54] No Fibonacci number can be a perfect number.[55] More generally, no Fibonacci number other than 1 can be multiply perfect,[56] and no ratio of two Fibonacci numbers can be perfect.[57]

Prime divisors

With the exceptions of 1, 8 and 144 (F1 = F2, F6 and F12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem).[58] As a result, 8 and 144 (F6 and F12) are the only Fibonacci numbers that are the product of other Fibonacci numbers.[59] The divisibility of Fibonacci numbers by a prime p is related to the Legendre symbol (p5) which is evaluated as follows: (p5)={0if p=51if p±1(mod5)1if p±2(mod5). If p is a prime number then Fp(p5)(modp)andFp(p5)0(modp).[60][61] For example, (25)=1,F3=2,F2=1,(35)=1,F4=3,F3=2,(55)=0,F5=5,(75)=1,F8=21,F7=13,(115)=+1,F10=55,F11=89. It is not known whether there exists a prime p such that Fp(p5)0(modp2). Such primes (if there are any) would be called Wall–Sun–Sun primes. Also, if p ≠ 5 is an odd prime number then:[62] 5Fp±122{12(5(p5)±5)(modp)if p1(mod4)12(5(p5)3)(modp)if p3(mod4). Example 1. p = 7, in this case p ≡ 3 (mod 4) and we have: (75)=1:12(5(75)+3)=1,12(5(75)3)=4. F3=2 and F4=3. 5F32=201(mod7) and 5F42=454(mod7) Example 2. p = 11, in this case p ≡ 3 (mod 4) and we have: (115)=+1:12(5(115)+3)=4,12(5(115)3)=1. F5=5 and F6=8. 5F52=1254(mod11) and 5F62=3201(mod11) Example 3. p = 13, in this case p ≡ 1 (mod 4) and we have: (135)=1:12(5(135)5)=5,12(5(135)+5)=0. F6=8 and F7=13. 5F62=3205(mod13) and 5F72=8450(mod13) Example 4. p = 29, in this case p ≡ 1 (mod 4) and we have: (295)=+1:12(5(295)5)=0,12(5(295)+5)=5. F14=377 and F15=610. 5F142=7106450(mod29) and 5F152=18605005(mod29) For odd n, all odd prime divisors of Fn are congruent to 1 modulo 4, implying that all odd divisors of Fn (as the products of odd prime divisors) are congruent to 1 modulo 4.[63] For example, F1=1,F3=2,F5=5,F7=13,F9=34=217,F11=89,F13=233,F15=610=2561. All known factors of Fibonacci numbers F(i) for all i < 50000 are collected at the relevant repositories.[64][65]

Periodicity modulo n

If the members of the Fibonacci sequence are taken mod n, the resulting sequence is periodic with period at most 6n.[66] The lengths of the periods for various n form the so-called Pisano periods.[67] Determining a general formula for the Pisano periods is an open problem, which includes as a subproblem a special instance of the problem of finding the multiplicative order of a modular integer or of an element in a finite field. However, for any particular n, the Pisano period may be found as an instance of cycle detection.

Generalizations

The Fibonacci sequence is one of the simplest and earliest known sequences defined by a recurrence relation, and specifically by a linear difference equation. All these sequences may be viewed as generalizations of the Fibonacci sequence. In particular, Binet's formula may be generalized to any sequence that is a solution of a homogeneous linear difference equation with constant coefficients. Some specific examples that are close, in some sense, to the Fibonacci sequence include:

  • Generalizing the index to negative integers to produce the negafibonacci numbers.
  • Generalizing the index to real numbers using a modification of Binet's formula.[38]
  • Starting with other integers. Lucas numbers have L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite.
  • Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have Pn = 2Pn−1 + Pn−2. If the coefficient of the preceding value is assigned a variable value x, the result is the sequence of Fibonacci polynomials.
  • Not adding the immediately preceding numbers. The Padovan sequence and Perrin numbers have P(n) = P(n − 2) + P(n − 3).
  • Generating the next number by adding 3 numbers (tribonacci numbers), 4 numbers (tetranacci numbers), or more. The resulting sequences are known as n-Step Fibonacci numbers.[68]

Applications

Mathematics

File:Pascal triangle fibonacci.svg
The Fibonacci numbers are the sums of the diagonals (shown in red) of a left-justified Pascal's triangle.

The Fibonacci numbers occur as the sums of binomial coefficients in the "shallow" diagonals of Pascal's triangle:[69] Fn=k=0n12(nk1k). This can be proved by expanding the generating function x1xx2=x+x2(1+x)+x3(1+x)2++xk+1(1+x)k+=n=0Fnxn and collecting like terms of xn. To see how the formula is used, we can arrange the sums by the number of terms present:

5 = 1+1+1+1+1
= 2+1+1+1 = 1+2+1+1 = 1+1+2+1 = 1+1+1+2
= 2+2+1 = 2+1+2 = 1+2+2

which is (50)+(41)+(32), where we are choosing the positions of k twos from nk−1 terms.

File:Fibonacci climbing stairs.svg
Use of the Fibonacci sequence to count {1, 2}-restricted compositions

These numbers also give the solution to certain enumerative problems,[70] the most common of which is that of counting the number of ways of writing a given number n as an ordered sum of 1s and 2s (called compositions); there are Fn+1 ways to do this (equivalently, it's also the number of domino tilings of the 2×n rectangle). For example, there are F5+1 = F6 = 8 ways one can climb a staircase of 5 steps, taking one or two steps at a time:

5 = 1+1+1+1+1 = 2+1+1+1 = 1+2+1+1 = 1+1+2+1 = 2+2+1
= 1+1+1+2 = 2+1+2 = 1+2+2

The figure shows that 8 can be decomposed into 5 (the number of ways to climb 4 steps, followed by a single-step) plus 3 (the number of ways to climb 3 steps, followed by a double-step). The same reasoning is applied recursively until a single step, of which there is only one way to climb. The Fibonacci numbers can be found in different ways among the set of binary strings, or equivalently, among the subsets of a given set.

  • The number of binary strings of length n without consecutive 1s is the Fibonacci number Fn+2. For example, out of the 16 binary strings of length 4, there are F6 = 8 without consecutive 1s—they are 0000, 0001, 0010, 0100, 0101, 1000, 1001, and 1010. Such strings are the binary representations of Fibbinary numbers. Equivalently, Fn+2 is the number of subsets S of {1, ..., n} without consecutive integers, that is, those S for which {i, i + 1} ⊈ S for every i. A bijection with the sums to n+1 is to replace 1 with 0 and 2 with 10, and drop the last zero.
  • The number of binary strings of length n without an odd number of consecutive 1s is the Fibonacci number Fn+1. For example, out of the 16 binary strings of length 4, there are F5 = 5 without an odd number of consecutive 1s—they are 0000, 0011, 0110, 1100, 1111. Equivalently, the number of subsets S of {1, ..., n} without an odd number of consecutive integers is Fn+1. A bijection with the sums to n is to replace 1 with 0 and 2 with 11.
  • The number of binary strings of length n without an even number of consecutive 0s or 1s is 2Fn. For example, out of the 16 binary strings of length 4, there are 2F4 = 6 without an even number of consecutive 0s or 1s—they are 0001, 0111, 0101, 1000, 1010, 1110. There is an equivalent statement about subsets.
  • Yuri Matiyasevich was able to show that the Fibonacci numbers can be defined by a Diophantine equation, which led to his solving Hilbert's tenth problem.[71]
  • The Fibonacci numbers are also an example of a complete sequence. This means that every positive integer can be written as a sum of Fibonacci numbers, where any one number is used once at most.
  • Moreover, every positive integer can be written in a unique way as the sum of one or more distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. This is known as Zeckendorf's theorem, and a sum of Fibonacci numbers that satisfies these conditions is called a Zeckendorf representation. The Zeckendorf representation of a number can be used to derive its Fibonacci coding.
  • Starting with 5, every second Fibonacci number is the length of the hypotenuse of a right triangle with integer sides, or in other words, the largest number in a Pythagorean triple, obtained from the formula (FnFn+3)2+(2Fn+1Fn+2)2=F2n+32. The sequence of Pythagorean triangles obtained from this formula has sides of lengths (3,4,5), (5,12,13), (16,30,34), (39,80,89), ... . The middle side of each of these triangles is the sum of the three sides of the preceding triangle.[72]
  • The Fibonacci cube is an undirected graph with a Fibonacci number of nodes that has been proposed as a network topology for parallel computing.
  • Fibonacci numbers appear in the ring lemma, used to prove connections between the circle packing theorem and conformal maps.[73]

Computer science

File:Fibonacci Tree 6.svg
Fibonacci tree of height 6. Balance factors green; heights red.
The keys in the left spine are Fibonacci numbers.

Nature

File:FibonacciChamomile.PNG
Yellow chamomile head showing the arrangement in 21 (blue) and 13 (cyan) spirals. Such arrangements involving consecutive Fibonacci numbers appear in a wide variety of plants.

Fibonacci sequences appear in biological settings,[80] such as branching in trees, arrangement of leaves on a stem, the fruitlets of a pineapple,[81] the flowering of artichoke, the arrangement of a pine cone,[82] and the family tree of honeybees.[83][84] Kepler pointed out the presence of the Fibonacci sequence in nature, using it to explain the (golden ratio-related) pentagonal form of some flowers.[85] Field daisies most often have petals in counts of Fibonacci numbers.[86] In 1830, Karl Friedrich Schimper and Alexander Braun discovered that the parastichies (spiral phyllotaxis) of plants were frequently expressed as fractions involving Fibonacci numbers.[87] Przemysław Prusinkiewicz advanced the idea that real instances can in part be understood as the expression of certain algebraic constraints on free groups, specifically as certain Lindenmayer grammars.[88]

File:SunflowerModel.svg
Illustration of Vogel's model for n = 1 ... 500

A model for the pattern of florets in the head of a sunflower was proposed by Helmut Vogel [de] in 1979.[89] This has the form θ=2πφ2n,r=cn where n is the index number of the floret and c is a constant scaling factor; the florets thus lie on Fermat's spiral. The divergence angle, approximately 137.51°, is the golden angle, dividing the circle in the golden ratio. Because this ratio is irrational, no floret has a neighbor at exactly the same angle from the center, so the florets pack efficiently. Because the rational approximations to the golden ratio are of the form F( j):F( j + 1), the nearest neighbors of floret number n are those at n ± F( j) for some index j, which depends on r, the distance from the center. Sunflowers and similar flowers most commonly have spirals of florets in clockwise and counter-clockwise directions in the amount of adjacent Fibonacci numbers,[90] typically counted by the outermost range of radii.[91] Fibonacci numbers also appear in the ancestral pedigrees of bees (which are haplodiploids), according to the following rules:

  • If an egg is laid but not fertilized, it produces a male (or drone bee in honeybees).
  • If, however, an egg is fertilized, it produces a female.

Thus, a male bee always has one parent, and a female bee has two. If one traces the pedigree of any male bee (1 bee), he has 1 parent (1 bee), 2 grandparents, 3 great-grandparents, 5 great-great-grandparents, and so on. This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, Fn, is the number of female ancestors, which is Fn−1, plus the number of male ancestors, which is Fn−2.[92][93] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.

File:X chromosome ancestral line Fibonacci sequence.svg
The number of possible ancestors on the X chromosome inheritance line at a given ancestral generation follows the Fibonacci sequence. (After Hutchison, L. "Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships".[94])

It has similarly been noticed that the number of possible ancestors on the human X chromosome inheritance line at a given ancestral generation also follows the Fibonacci sequence.[94] A male individual has an X chromosome, which he received from his mother, and a Y chromosome, which he received from his father. The male counts as the "origin" of his own X chromosome (F1=1), and at his parents' generation, his X chromosome came from a single parent (F2=1). The male's mother received one X chromosome from her mother (the son's maternal grandmother), and one from her father (the son's maternal grandfather), so two grandparents contributed to the male descendant's X chromosome (F3=2). The maternal grandfather received his X chromosome from his mother, and the maternal grandmother received X chromosomes from both of her parents, so three great-grandparents contributed to the male descendant's X chromosome (F4=3). Five great-great-grandparents contributed to the male descendant's X chromosome (F5=5), etc. (This assumes that all ancestors of a given descendant are independent, but if any genealogy is traced far enough back in time, ancestors begin to appear on multiple lines of the genealogy, until eventually a population founder appears on all lines of the genealogy.)

Other

  • In optics, when a beam of light shines at an angle through two stacked transparent plates of different materials of different refractive indexes, it may reflect off three surfaces: the top, middle, and bottom surfaces of the two plates. The number of different beam paths that have k reflections, for k > 1, is the k-th Fibonacci number. (However, when k = 1, there are three reflection paths, not two, one for each of the three surfaces.)[95]
  • Fibonacci retracement levels are widely used in technical analysis for financial market trading.
  • Since the conversion factor 1.609344 for miles to kilometers is close to the golden ratio, the decomposition of distance in miles into a sum of Fibonacci numbers becomes nearly the kilometer sum when the Fibonacci numbers are replaced by their successors. This method amounts to a radix 2 number register in golden ratio base φ being shifted. To convert from kilometers to miles, shift the register down the Fibonacci sequence instead.[96]
  • The measured values of voltages and currents in the infinite resistor chain circuit (also called the resistor ladder or infinite series-parallel circuit) follow the Fibonacci sequence. The intermediate results of adding the alternating series and parallel resistances yields fractions composed of consecutive Fibonacci numbers. The equivalent resistance of the entire circuit equals the golden ratio.[97]
  • Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics.[98] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable. The procedure is illustrated in an example often referred to as the Brock–Mirman economic growth model.
  • Mario Merz included the Fibonacci sequence in some of his artworks beginning in 1970.[99]
  • Joseph Schillinger (1895–1943) developed a system of composition which uses Fibonacci intervals in some of its melodies; he viewed these as the musical counterpart to the elaborate harmony evident within nature.[100] See also Golden ratio § Music.

See also

References

Explanatory footnotes

  1. "For four, variations of meters of two [and] three being mixed, five happens. For five, variations of two earlier—three [and] four, being mixed, eight is obtained. In this way, for six, [variations] of four [and] of five being mixed, thirteen happens. And like that, variations of two earlier meters being mixed, seven morae [is] twenty-one. In this way, the process should be followed in all mātrā-vṛttas" [15]

Citations

  1. Richard A. Brualdi, Introductory Combinatorics, Fifth edition, Pearson, 2005
  2. Peter Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994
  3. 3.0 3.1 Sloane, N. J. A. (ed.), "Sequence A000045 (Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  4. 4.0 4.1 4.2 Goonatilake, Susantha (1998), Toward a Global Science, Indiana University Press, p. 126, ISBN 978-0-253-33388-9
  5. 5.0 5.1 Singh, Parmanand (1985), "The So-called Fibonacci numbers in ancient and medieval India", Historia Mathematica, 12 (3): 229–44, doi:10.1016/0315-0860(85)90021-7
  6. 6.0 6.1 Knuth, Donald (2006), The Art of Computer Programming, vol. 4. Generating All Trees – History of Combinatorial Generation, Addison–Wesley, p. 50, ISBN 978-0-321-33570-8, it was natural to consider the set of all sequences of [L] and [S] that have exactly m beats. ... there are exactly Fm+1 of them. For example the 21 sequences when m = 7 are: [gives list]. In this way Indian prosodists were led to discover the Fibonacci sequence, as we have observed in Section 1.2.8 (from v.1)
  7. Sigler 2002, pp. 404–05.
  8. Lucas 1891, p. 3.
  9. Beck & Geoghegan 2010.
  10. Bóna 2011, p. 180.
  11. Knuth, Donald (1968), The Art of Computer Programming, vol. 1, Addison Wesley, p. 100, ISBN 978-81-7758-754-8, Before Fibonacci wrote his work, the sequence Fn had already been discussed by Indian scholars, who had long been interested in rhythmic patterns ... both Gopala (before 1135 AD) and Hemachandra (c. 1150) mentioned the numbers 1,2,3,5,8,13,21 explicitly [see P. Singh Historia Math 12 (1985) 229–44]" p. 100 (3d ed) ...
  12. 12.0 12.1 Livio 2003, p. 197.
  13. Agrawala, VS (1969), Pāṇinikālīna Bhāratavarṣa (Hn.). Varanasi-I: TheChowkhamba Vidyabhawan, SadgurushiShya writes that Pingala was a younger brother of Pāṇini [Agrawala 1969, lb]. There is an alternative opinion that he was a maternal uncle of Pāṇini [Vinayasagar 1965, Preface, 121]. ... Agrawala [1969, 463–76], after a careful investigation, in which he considered the views of earlier scholars, has concluded that Pāṇini lived between 480 and 410 BC
  14. Singh, Parmanand (1985), "The So-called Fibonacci Numbers in Ancient and Medieval India", Historia Mathematica, 12 (3), Academic Press: 232, doi:10.1016/0315-0860(85)90021-7
  15. Velankar, HD (1962), 'Vṛttajātisamuccaya' of kavi Virahanka, Jodhpur: Rajasthan Oriental Research Institute, p. 101
  16. Livio 2003, p. 197–198.
  17. Shah, Jayant (1991), A History of Piṅgala's Combinatorics (PDF), Northeastern University, p. 41, retrieved 4 January 2019
  18. Sigler 2002, pp. 404–405.
  19. "Fibonacci's Liber Abaci (Book of Calculation)", The University of Utah, 13 December 2009, retrieved 28 November 2018
  20. Hemenway, Priya (2005), Divine Proportion: Phi In Art, Nature, and Science, New York: Sterling, pp. 20–21, ISBN 1-4027-3522-7
  21. Knott, Ron (25 September 2016), "The Fibonacci Numbers and Golden section in Nature – 1", University of Surrey, retrieved 27 November 2018
  22. Knott, Ron, Fibonacci's Rabbits, University of Surrey Faculty of Engineering and Physical Sciences
  23. Gardner, Martin (1996), Mathematical Circus, The Mathematical Association of America, p. 153, ISBN 978-0-88385-506-5, It is ironic that Leonardo, who made valuable contributions to mathematics, is remembered today mainly because a 19th-century French number theorist, Édouard Lucas... attached the name Fibonacci to a number sequence that appears in a trivial problem in Liber abaci
  24. Sarah-Marie Belcastro (2018). Discrete Mathematics with Ducks (2nd, illustrated ed.). CRC Press. p. 260. ISBN 978-1-351-68369-2. Extract of page 260
  25. Beutelspacher, Albrecht; Petri, Bernhard (1996), "Fibonacci-Zahlen", Der Goldene Schnitt, Einblick in die Wissenschaft, Vieweg+Teubner Verlag, pp. 87–98, doi:10.1007/978-3-322-85165-9_6, ISBN 978-3-8154-2511-4
  26. Ball 2003, p. 156.
  27. Ball 2003, pp. 155–156.
  28. Sloane, N. J. A. (ed.), "Sequence A002390 (Decimal expansion of natural logarithm of golden ratio)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  29. Sloane, N. J. A. (ed.), "Sequence A097348 (Decimal expansion of arccsch(2)/log(10))", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  30. Kepler, Johannes (1966), A New Year Gift: On Hexagonal Snow, Oxford University Press, p. 92, ISBN 978-0-19-858120-8
  31. Strena seu de Nive Sexangula, 1611
  32. Gessel, Ira (October 1972), "Fibonacci is a Square" (PDF), The Fibonacci Quarterly, 10 (4): 417–19, retrieved April 11, 2012
  33. "The Golden Ratio, Fibonacci Numbers and Continued Fractions". nrich.maths.org. Retrieved 2024-03-22.
  34. Dijkstra, Edsger W. (1978), In honour of Fibonacci (PDF)
  35. Lucas 1891, p. 4.
  36. Vorobiev, Nikolaĭ Nikolaevich; Martin, Mircea (2002), "Chapter 1", Fibonacci Numbers, Birkhäuser, pp. 5–6, ISBN 978-3-7643-6135-8
  37. Flajolet, Philippe; Sedgewick, Robert (2009), Analytic Combinatorics, Cambridge University Press, p. 42, ISBN 978-0521898065
  38. 38.0 38.1 38.2 Weisstein, Eric W., "Fibonacci Number", MathWorld
  39. Glaister, P (1995), "Fibonacci power series", The Mathematical Gazette, 79 (486): 521–25, doi:10.2307/3618079, JSTOR 3618079, S2CID 116536130
  40. Landau (1899) quoted according Borwein, Page 95, Exercise 3b.
  41. Sloane, N. J. A. (ed.), "Sequence A079586 (Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  42. André-Jeannin, Richard (1989), "Irrationalité de la somme des inverses de certaines suites récurrentes", Comptes Rendus de l'Académie des Sciences, Série I, 308 (19): 539–41, MR 0999451
  43. Honsberger, Ross (1985), "Millin's series", Mathematical Gems III, Dolciani Mathematical Expositions, vol. 9, American Mathematical Society, pp. 135–136, ISBN 9781470457181
  44. Ribenboim, Paulo (2000), My Numbers, My Friends, Springer-Verlag
  45. Su, Francis E (2000), "Fibonacci GCD's, please", Mudd Math Fun Facts, et al, HMC, archived from the original on 2009-12-14, retrieved 2007-02-23
  46. Williams, H. C. (1982), "A note on the Fibonacci quotient Fpε/p", Canadian Mathematical Bulletin, 25 (3): 366–70, doi:10.4153/CMB-1982-053-0, hdl:10338.dmlcz/137492, MR 0668957. Williams calls this property "well known".
  47. Prime Numbers, Richard Crandall, Carl Pomerance, Springer, second edition, 2005, p. 142.
  48. Sloane, N. J. A. (ed.), "Sequence A005478 (Prime Fibonacci numbers)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  49. Diaconis, Persi (2018), "Probabilizing Fibonacci numbers" (PDF), in Butler, Steve; Cooper, Joshua; Hurlbert, Glenn (eds.), Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham, Cambridge University Press, pp. 1–12, ISBN 978-1-107-15398-1, MR 3821829, archived from the original (PDF) on 2023-11-18, retrieved 2022-11-23
  50. Honsberger, Ross (1985), "Mathematical Gems III", AMS Dolciani Mathematical Expositions (9): 133, ISBN 978-0-88385-318-4
  51. Cohn, J. H. E. (1964), "On square Fibonacci numbers", The Journal of the London Mathematical Society, 39: 537–540, doi:10.1112/jlms/s1-39.1.537, MR 0163867
  52. Pethő, Attila (2001), "Diophantine properties of linear recursive sequences II", Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 17: 81–96
  53. Bugeaud, Y; Mignotte, M; Siksek, S (2006), "Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers", Ann. Math., 2 (163): 969–1018, arXiv:math/0403046, Bibcode:2004math......3046B, doi:10.4007/annals.2006.163.969, S2CID 10266596
  54. Luo, Ming (1989), "On triangular Fibonacci numbers" (PDF), Fibonacci Quart., 27 (2): 98–108, doi:10.1080/00150517.1989.12429576
  55. Luca, Florian (2000), "Perfect Fibonacci and Lucas numbers", Rendiconti del Circolo Matematico di Palermo, 49 (2): 313–18, doi:10.1007/BF02904236, ISSN 1973-4409, MR 1765401, S2CID 121789033
  56. Broughan, Kevin A.; González, Marcos J.; Lewis, Ryan H.; Luca, Florian; Mejía Huguet, V. Janitzio; Togbé, Alain (2011), "There are no multiply-perfect Fibonacci numbers", Integers, 11a: A7, MR 2988067
  57. Luca, Florian; Mejía Huguet, V. Janitzio (2010), "On Perfect numbers which are ratios of two Fibonacci numbers", Annales Mathematicae at Informaticae, 37: 107–24, ISSN 1787-6117, MR 2753031
  58. Knott, Ron, The Fibonacci numbers, UK: Surrey
  59. Sloane, N. J. A. (ed.), "Sequence A235383 (Fibonacci numbers that are the product of other Fibonacci numbers)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  60. Ribenboim, Paulo (1996), The New Book of Prime Number Records, New York: Springer, p. 64, ISBN 978-0-387-94457-9
  61. Lemmermeyer 2000, pp. 73–74, ex. 2.25–28.
  62. Lemmermeyer 2000, pp. 73–74, ex. 2.28.
  63. Lemmermeyer 2000, p. 73, ex. 2.27.
  64. Fibonacci and Lucas factorizations, Mersennus collects all known factors of F(i) with i < 10000.
  65. Factors of Fibonacci and Lucas numbers, Red golpe collects all known factors of F(i) with 10000 < i < 50000.
  66. Freyd, Peter; Brown, Kevin S. (1993), "Problems and Solutions: Solutions: E3410", The American Mathematical Monthly, 99 (3): 278–79, doi:10.2307/2325076, JSTOR 2325076
  67. Sloane, N. J. A. (ed.), "Sequence A001175 (Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n)", The On-Line Encyclopedia of Integer Sequences, OEIS Foundation
  68. Lü, Kebo; Wang, Jun (2006), "k-step Fibonacci sequence modulo m", Utilitas Mathematica, 71: 169–177, MR 2278830
  69. Lucas 1891, p. 7.
  70. Stanley, Richard (2011), Enumerative Combinatorics I (2nd ed.), Cambridge Univ. Press, p. 121, Ex 1.35, ISBN 978-1-107-60262-5
  71. Harizanov, Valentina (1995), "Review of Yuri V. Matiyasevich, Hibert's Tenth Problem", Modern Logic, 5 (3): 345–55
  72. Pagni, David (September 2001), "Fibonacci Meets Pythagoras", Mathematics in School, 30 (4): 39–40, JSTOR 30215477
  73. Stephenson, Kenneth (2005), Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge University Press, ISBN 978-0-521-82356-2, MR 2131318; see especially Lemma 8.2 (Ring Lemma), pp. 73–74, and Appendix B, The Ring Lemma, pp. 318–321.
  74. Knuth, Donald E (1997), The Art of Computer Programming, vol. 1: Fundamental Algorithms (3rd ed.), Addison–Wesley, p. 343, ISBN 978-0-201-89683-1
  75. Adelson-Velsky, Georgy; Landis, Evgenii (1962), "An algorithm for the organization of information", Proceedings of the USSR Academy of Sciences (in русский), 146: 263–266 English translation by Myron J. Ricci in Soviet Mathematics - Doklady, 3:1259–1263, 1962.
  76. Avriel, M; Wilde, DJ (1966), "Optimality of the Symmetric Fibonacci Search Technique", Fibonacci Quarterly (3): 265–69, doi:10.1080/00150517.1966.12431364
  77. Amiga ROM Kernel Reference Manual, Addison–Wesley, 1991
  78. "IFF", Multimedia Wiki
  79. Dean Leffingwell (2021-07-01), Story, Scaled Agile Framework, retrieved 2022-08-15
  80. Douady, S; Couder, Y (1996), "Phyllotaxis as a Dynamical Self Organizing Process" (PDF), Journal of Theoretical Biology, 178 (3): 255–74, doi:10.1006/jtbi.1996.0026, archived from the original (PDF) on 2006-05-26
  81. Jones, Judy; Wilson, William (2006), "Science", An Incomplete Education, Ballantine Books, p. 544, ISBN 978-0-7394-7582-9
  82. Brousseau, A (1969), "Fibonacci Statistics in Conifers", Fibonacci Quarterly (7): 525–32
  83. "Marks for the da Vinci Code: B–", Maths, Computer Science For Fun: CS4FN
  84. Scott, T.C.; Marketos, P. (March 2014), On the Origin of the Fibonacci Sequence (PDF), MacTutor History of Mathematics archive, University of St Andrews
  85. Livio 2003, p. 110.
  86. Livio 2003, pp. 112–13.
  87. Varenne, Franck (2010), Formaliser le vivant - Lois, Théories, Modèles (in français), Hermann, p. 28, ISBN 9782705678128, retrieved 2022-10-30, En 1830, K. F. Schimper et A. Braun [...]. Ils montraient que si l'on représente cet angle de divergence par une fraction reflétant le nombre de tours par feuille ([...]), on tombe régulièrement sur un des nombres de la suite de Fibonacci pour le numérateur [...].
  88. Prusinkiewicz, Przemyslaw; Hanan, James (1989), Lindenmayer Systems, Fractals, and Plants (Lecture Notes in Biomathematics), Springer-Verlag, ISBN 978-0-387-97092-9
  89. Vogel, Helmut (1979), "A better way to construct the sunflower head", Mathematical Biosciences, 44 (3–4): 179–89, doi:10.1016/0025-5564(79)90080-4
  90. Livio 2003, p. 112.
  91. Prusinkiewicz, Przemyslaw; Lindenmayer, Aristid (1990), "4", The Algorithmic Beauty of Plants, Springer-Verlag, pp. 101–107, ISBN 978-0-387-97297-8
  92. Basin, S. L. (1963), "The Fibonacci sequence as it appears in nature" (PDF), The Fibonacci Quarterly, 1 (1): 53–56, doi:10.1080/00150517.1963.12431602
  93. Yanega, D. 1996. Sex ratio and sex allocation in sweat bees (Hymenoptera: Halictidae). J. Kans. Ent. Soc. 69 Suppl.: 98-115.
  94. 94.0 94.1 Hutchison, Luke (September 2004), "Growing the Family Tree: The Power of DNA in Reconstructing Family Relationships" (PDF), Proceedings of the First Symposium on Bioinformatics and Biotechnology (BIOT-04), archived from the original (PDF) on 2020-09-25, retrieved 2016-09-03
  95. Livio 2003, pp. 98–99.
  96. "Zeckendorf representation", Encyclopedia of Math
  97. Patranabis, D.; Dana, S. K. (December 1985), "Single-shunt fault diagnosis through terminal attenuation measurement and using Fibonacci numbers", IEEE Transactions on Instrumentation and Measurement, IM-34 (4): 650–653, Bibcode:1985ITIM...34..650P, doi:10.1109/tim.1985.4315428, S2CID 35413237
  98. Brasch, T. von; Byström, J.; Lystad, L.P. (2012), "Optimal Control and the Fibonacci Sequence", Journal of Optimization Theory and Applications, 154 (3): 857–78, doi:10.1007/s10957-012-0061-2, hdl:11250/180781, S2CID 8550726
  99. Livio 2003, p. 176.
  100. Livio 2003, p. 193.

Works cited

External links

nl:Fibonaccigetalml:ഫിബനാച്ചി ശ്രേണിps:فیبوناچې اعدادid:Bilangan Fibonaccisimple:Fibonacci numberta:பிபனாச்சி எண்கள்ar:عدد فيبوناتشيcv:Фибоначчи хисепĕte:ఫిబోనాచీ సంఖ్యలుaz:Fibonaççi ədədlərisi:ෆිබොනාච්චි සංඛ්‍යාlv:Fibonači skaitļihr:Fibonaccijev brojvi:Dãy Fibonaccimr:फिबोनाची श्रेणीsr:Фибоначијев низhe:מספר פיבונאצ'יfa:اعداد فیبوناچیsv:Fibonaccitalde:Fibonaccizahlja:フィボナッチ数wuu:斐波那契数kaa:Fibonachchi sanlarıpa:ਫ਼ੀਬੋਨਾਚੀ ਤਰਤੀਬhi:हेमचन्द्र श्रेणीcu:Фївонакїинови чисмєнаeu:Fibonacciren zenbakiakbe:Лікі Фібаначыwar:Ihap Fibonaccihu:Fibonacci-számokba:Фибоначчи һандарыca:Nombre de Fibonaccisq:Numrat e Fibonaccitru:Числа Фибоначчиwikifunctions:Z13835et:Fibonacci jadauk:Числа Фібоначчіit:Numero di Fibonaccimk:Фибоначиева низаno:Fibonaccitallko:피보나치 수ckb:ژمارەی فیبۆناچیla:Numeri Fibonaccianiro:Număr Fibonaccihy:Ֆիբոնաչիի թվերeo:Fibonaĉi-nombroda:Fibonacci-talth:จำนวนฟีโบนัชชีgu:ફિબોનાકિkk:Фибоначчи сандарыbs:Fibonaccijev brojzh:斐波那契数mn:Фибоначчийн тооfiu-vro:Fibonacci arvcy:Rhif Fibonaccifr:Nombre de Fibonaccihyw:Ֆիպոնաչչիի թիւes:Número de Fibonaccish:Fibonaccijev brojbg:Числа на Фибоначиuz:Fibonacci sonlariis:Fibonacci-runanzh-yue:費氏數tl:Bilang na Fibonaccisl:Fibonaccijevo število